簡易檢索 / 詳目顯示

研究生: 何中仁
Chung-Jen Ho
論文名稱: 添加微量銦對錫鋅銲錫特性影響之研究
An investigation of Lead-free Sn-Zn solder contained little Indium element
指導教授: 蔡顯榮
Hsien-Lung Tsai
口試委員: 周賢鎧
none
黃聖芳
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 91
中文關鍵詞: 無鉛銲料溶解速率介金屬化合物
外文關鍵詞: Sn-Zn-In, Sn-Pb, I ntermetallic Compound (IMC)
相關次數: 點閱:231下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

錫鉛焊接為電子構裝主要銲接材料,惟鉛具有劇毒,不符於綠色環保,各先進國家無不積極研究無鉛銲料,其中Sn-Zn銲料與傳統Sn-Pb銲料機械性質相近,然易氧化容易腐蝕。In元素是屬於稀有元素,且In具有良好的抗熱潛變特性且有良好潤濕性,添加微量In有助於降低Sn-Zn銲錫熔點但取得較困難,適度添加可改善其缺點,但是過多會使銲料成本大幅增加。
本研究主旨在探討錫鋅合金中添加不同重量百分比之銦In (0.5wt%、1wt%及2%wt)元素,藉由銅金屬基材,相對錫鋅銦合金進行溶解現象、潤濕行為、熱性質、機械性質及介金屬化合物之關係,觀察與分析此一銲錫特性,尋求更佳之銲接性,進一步瞭解Sn-Zn-In銲錫合金之特性。
Sn-9Zn合金中添加微量的銦(0.5wt% - 2wt%)元素,其共晶溫度會因銦含量之增加而遞減,最大潤濕力隨著銦元素之重量百分比添加,潤濕性能相對增加,共晶溫度明顯下降,溫度越高其潤濕力有增加之趨勢;同時銅之溶解率,隨銦含量增加皆有明顯提升,且溶解速率隨著銦增加而增加。在銲錫合金與銅基材界面產生Cu5Zn8及Sn + CuZn兩種介金屬化合物。在150°C,120hr之時效處理後,金屬間化合物快速成長。
在溶解速率方面,雖較Sn-9Zn銲錫合金之溶解速率大,惟均較目前工業用添加其它成分之無鉛銲錫之相對溶解率小仍較俱優越性。經時效後,銲錫合金與銅基材界面產生之介金屬化合物,厚度明顯增加。研究結果顯示,在Sn-9Zn合金中添加微量的銦元素,其潤濕性、熔點及機械性質皆優於傳統Sn-9Zn銲錫合金。


Tin-lead (Sn-Pb) based solder alloy has been very common for electronic soldering. As the green concept has been well adopted by the world, environmental un-friendly material such as lead (Pb) is prohibited in electronic products. Researches for lead-free solders have been conducted. Sn-Zn based solder has very similar mechanical properties comparing to Sn-Pb based one. However Sn-Zn based solder can be oxidized easily. By adding small amount of Indium (In), a rare metal, into Sn-Zn based solder, it would lower the melting point of Sn-Zn based solder.
The main purpose of this investigation is to add three different weight percentages of Indium into Sn-9Zn solder and observe the dissolution、wetting behavior、thermal property、mechanical property and Intermetallic Compound (IMC) of both Cu substrate and Sn-Zn-In solder.
In addition, the study of seeking the best soldering ability and further comprehend Sn-Zn-In solder property was done.
By adding different weight percentage of Indium(0.5wt%、1wt% and 2%wt), the Eutectic temperature was reduced gradually and the wetting force was increased. As the temperature got higher, the wetting force was increased at the same time. Furthermore, the dissolution rate of Cu was clearly increased. When increasing the amount of Indium, the dissolution rate was increased as well. Under 150°C/120hr aging treatment, the IMC of Cu5Zn8 and Sn + CuZn generated between the solder and Cu substrate was growing rapidly and a lot of cavities were found.
By adding different weight percentage of Indium, the dissolution rate was bigger than the dissolution rate of Sn-9Zn solder. However, if it was compared with industrial solders, they still possess superiority on dissolution. Furthermore, the thickness of IMC was increased obvious after the aging. According to the experiments, by adding tiny amount of Indium into Sn-9Zn solder, the wetting ability、melt temperate and mechanical property are all better than traditional Sn-9Zn solder.

目 錄 中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 誌謝……………………………………………………………………IV 目錄……………………………………………………………………VI 圖目錄…………………………………………………………………VIII 表目錄…………………………………………………………………XI 第一章 前言……………………………………………………………1 1.1 研究背景 ………………………………………………………1 1.2 研究目的 ………………………………………………………2 第二章 文獻回顧………………………………………………………3 2.1 無鉛銲錫合金的發展 …………………………………………3 2.2 常見無鉛銲錫性質比較 ………………………………………8 2.2.1 錫銅合金 ………………………………………………10 2.2.2 錫銀合金 ………………………………………………11 2.2.3 錫銀銅合金 ……………………………………………11 2.2.4 錫鋅合金 ………………………………………………12 2.2.5 錫鋅銦合金 ……………………………………………13 2.2.6 錫鉍合金 ………………………………………………13 2.2.7 錫銦合金 ………………………………………………14 2.3 無鉛銲錫之潤濕特性 …………………………………………15 2.3.1 潤濕天平法 ……………………………………………………16 2.3.2 接觸角量測 ……………………………………………………19 2.4 銲錫合金之熱性質分析 …………………………………………20 2.5 金屬基材溶解行 …………………………………………………21 2.6 介面反應 …………………………………………………………24 2.6.1 銲錫合金與基材之介面反應 …………………………………24 2.6.2 Sn-9Zn合金與Cu基材間之界面反應 …………………………24 第三章 實驗方法………………………………………………………26 3.1 合金界面特性分析 ………………………………………………28 3.1.1 銲錫合金冶鍊 …………………………………………………28 3.1.2 無鉛錫球製作 …………………………………………………29 3.1.3 合金顯微組織觀察 ……………………………………………30 3.2 銲錫特性分析 ……………………………………………………31 3.2.1 潤濕天平實驗 …………………………………………………31 3.2.2 潤濕角實驗 ……………………………………………………32 3.2.3 高溫時效處理 …………………………………………………32 3.3 熱性分析…….……………………………………………………33 3.3.1 合金融點量測 ………………………………………………33 3.4 銅之溶點速率分析 ……………………………………………33 3.5 機械性質分析 ……………………………………………………34 3.5.1 微硬度測試 ……………………………………………………34 3.5.2 銲點剪力測試 …………………………………………………35 第四章 實驗結果與討論………………………………………………37 4.1 錫鋅銦顯微組織觀察與分析 ……………………………………37 4.1.1 錫鋅銦界面顯微組織觀察與分析 ……………………………37 4.1.2 錫鋅銦合金X光繞射分析………………………………………44 4.2 錫鋅銦合金之熱性質分析 ………………………………………47 4.3 錫鋅銦合金之可銲錫性分析 ……………………………………51 4.3.1 銲錫合金與銅基材之接觸角量 ………………………………51 4.3.2 錫銲錫合金與銅基材潤濕性比較 ……………………………57 4.3.3 溶解速率分析 …………………………………………………63 4.4 錫鋅銦合金之界面觀察與分析 …………………………………66 4.4.1 錫鋅銦合金與銅基材之界面反應 ……………………………66 4.4.2 介金屬之表面型態 ……………………………………………70 4.4.3 界面金屬間化合物之成長 ……………………………………75 4.5 銲錫合金機械性質分析 …………………………………………80 4.5.1 錫鋅銦合金微硬度分析 ………………………………………80 4.5.2 錫鋅銦合金接點剪力強度量測 ………………………………81 4.5.3 基板上墊層與錫球之斷裂面分析 ……………………………83 4.5.4時效後基板上墊層與錫球之斷裂面分析………………………86 第五章 結論 …………………………………………………………89 第六章 參考文…………………………………………………………90

[1]呂宗興,工業材料, 第115期,pp.49 ~53 (1996)
[2]C.Lea,”Quantitative Solderability Measurement of Electronic Components “, Part 1, Soldering & Surf. Mount Technol., No.4, pp.8~13(1990)
[3]S. Jin, “Developing Lead-free Solders: A Challenge and Opportunity,” JOM, 45 (1993) 1.
[4]K.L. Lin and T.P. Liu, Mater. Chem. Phys. 56 (1998) 171.
[5]T. Takemoto, T. Funaki and A. Matsunawa, J. Japan Welding Society, 17 (1999)
[6]K.L. Lin and F.C. Chung and T.P. Liu,”The Potemtiodynamic Polarization Behavior of Pb-Free XIn-9(5Al-Zn)-YSn Solders”, Materials Chemistry and Physics, Vol.53, pp.55~59(1998)
[7]C.F. Chan, S.K. Lahiri, P.Yuan and J.B.H. How, ”An Itermetallic Study of solder joints with Sn-Ag-Cu Lead-Free Solder,” Electronics Packaging Technology Conference P.72(2000)
[8]莊東漢、吳醒非、黃貴偉、顏秀芳、林修任,界面科學會誌,
26卷2期,pp.47~52,(2004)年。
[9]陳建銘,”無鉛錫球封裝晶片之掉落衝擊測試”,碩士論文,國立中山大學機械與機電工程學系研究所(2005)
[10]M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering. R, Vol.27, No. 5-6, pp.95~141(2000)
[11]PC FAB;工研院經資中心ITIS計畫(2001)
[12]F.G Yost, F. M. Hosking, and D.R. Frear, The Mechanics of Solder Alloy Wetting and Spreading, Van Nostrand Reinhold, New York, Ch.2 (1993)
[13]C.K. Shin, Y.J. Baik, and J.Y. Huh, ”Effects of micro structural evolution and intermetallic layer growth on shear strength of ball-grid-array Sn-Cu solder joints”, J. Electron. Mat., Vol.30, p.1323(2001)
[14]T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, “Morphology, kinetics, and thermo-dynamics of eutectic SnPb and Pb-free solders on Cu”, J. Mater. Res., Vol.17, p.291 (2002)
[15]莊東漢,顏秀芳,林修任,黃貴偉,"Sn3.5Ag銲錫接點介面金屬形態與成長動力學”, pp.35~41,民國九十三年。
[16]C.M.L. Wu, C.M.T. Law, D.Q. Yu, and L. Wang, J. Electron . Master, pp.32~63(2003)
[17]Z. G. Chen, Y. W. Shi, Z. D. Xia, and Y. F. Yan, Journal of Electronic Materials, pp.2~31(2002)
[18]K.Suganuma,"Interfacial Phenomena in Lead-free Soldering",Proceedings Ecodesign99: Firt international Symposium on Enviomentally Conscious Design and Inverse Manufacturing, pp.620~625(1999)
[19]D. Rflander, E. G. Jacobs, and R. Fpinizzotto,"Activation Engergies of intermatallic Growth of Sn-Ag Ectectic Solering on Copper Substrates", J. Electron. Master, Vol. 26, No.7, pp.883~887(1997)
[20]L.Ye, Z. Lai, J.Liu and A. Tholen,”Recent Achievement in Microstructure Investigation of Sn-0.5Cu-3.4Ag Lead-Free Alloy by Adding Boron”, International Symposium on Advanced Packing Material, pp.262~267(1999)
[21]K.Habu, N. Takeda, H.Matenabe, H. Ooki and T.Saito,”Development of new Pb-Free Solder Alloy”, Proceedings EcoDesign’99:First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp.21~24(1999)
[22]C.H. Raeder, L.E. Felton, V. A. Tanzi and D.B. Knorr, " The Effect of Acting on Micostructure, Room Temperture Deformation, and Fracture of Sn-Bi/Cu Solder Joints", J. Electron. Master, Vol.23, No.7, pp.611~617(2002)
[23]L .Wang, H.T. Ma, H.P. Xie, D.Q. Yu, Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, vol.5, pp.663~667(2005)
[24]M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering. R, Vol.27, No. 5-6, pp.95~141(2000)
[25]M. McCormark, S. Jin, H. S. Chen and D. A. Machusak, " New Lead-Free, Sn-Sn-In Solder Alloys", J. Electron. Mater., Vol.23, No.7, pp.687~690(1994)
[26]N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, Vol. 11, P.278(1990)
[27]Z. Mei and J. W. Morris, Jr., " Characterization of Eutecite Sn-Bi Solder Joint", J. Electron. Master., Vol.21, NO.6,pp.599~607(1992)
[28]C.H. Raeder, L.E. Felton, V. A. Tanzi and D.B. Knorr, " The Effect of Acting on Micostructure, Room Temperture Deformation, and Fracture of Sn-Bi/Cu Solder Joints", J. Electron. Master, Vol.23, No.7, pp.611~617(2002)
[29]E.P. Wood and K. L. Nimmo, " In Search of New Lead Free Electronic Soldering", J. Electron. Master., Col.23 N0. 8, pp.709~713(1994)
[30]張道智、張喬雲、游善溥,「無鉛組裝技術現況與趨勢」,表面黏著技術,第50期,頁16-34,2005
[31]L.E Felton, C.H. Raeder and D.B. Knorr, " The Propeties of Tin-Bismuth Alloy Solders". JOM, Vol.45, No.7, pp.28~32(1993)
[32]C. Lea,”Quantitative Solderability Measurement of Electronic Components “, Part 1, Soldering & Surf. Mount Technol., No.4, pp.8~13(1990)
[33]ANSI/J-STD-003,”Solderability Tests for Printed Boards”April (1992)
[34]Y.S. Wook, W.K. Choi and H.M. Lee,”Calculation of surface Tension and Wetting Properties of Sn-Base Solder alloys”, Scripta Materialia, Vol.40, No.3, pp297-302 (1999)
[35]NF A 89400 P, “Brasage tender, Mesure de brasabilite au meniscographe,” Nonember 1991
[36]陳俊仁,"銦錫銲錫與無電鍍鎳銅磷之潤濕行為和界面反應",國立成功大學材料科學與工程學系碩士論文,民國85年6月。
[37]S. Mannan, M. Clode, Soldering and Surface Mount Technology, vol. 16, pp. 31~33(2004).
[38]William D. Callister, JR. "Fundamentals of materials Science and Engineering", pp.130-135(2001)
[39]M.Hansen, K. Anderko, “Constitution of Binary Alloys”, McGraw-Hill, New York, pp.21~ 35(1958)
[40]洪慧慈,"錫鋅系無鉛銲錫與金屬化銅基基材之接合行為與界面反應",國立成功大學材料科學與工程學系碩士論文,民國93年6月。
[41]Z.Moser, J. Dutkiewicz, W. Gasior and J. Salawa, Binary Alloy phase Diagram, Vol.3, ASM International (1985)
[42]N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, Vol. 11, P.278(1990)
[43]S.C. Yang, C.E. Ho, and C.W. Chang ,C.R. Kaoa ,” Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu, J. Mater. Res., p.65(2006)
[44]D.Q. Yu, H.P. Xie, and L. Wang, Journal of Alloys and Compounds, Vol. 379, p.314 (2004)
[45]American Ceramic Society, in “JCPDS-International Centre for
Diffraction Data”, Swarthmore, PA (2003).
[46]白蓉生,”表面黏裝與銲接”,電路板雜誌 (1992)
[47]M. L. Huang, T. Loeher, A. Ostmann, H. Reichl, Applied Physics Letter, vol. 86, p181(2005).
[48]R. DeIasi and P. N. Alder, “Calorimentric Studies of 7000 Series Aluminum Alloys: II. Comparsion of 7075, 7050, and RX720 Alloys”, Metall. Trans., 8A, pp.1185-1190, (1977)
[49]曾堉,”金屬基材與介金屬相在無鉛銲料中溶解現象的探討”, 國立台灣科技大學化學工程系碩士論文,民國95年7月。
[50]A.P. Miodownik, Binary Alloy Phase Diagarm, Vol.3, ASM International, p.182(1990)
[51]K.L. Lin, L.H. Wen, and T.P. Liu, Journal of Materials Research , Vol. 27, p.97 (1998)
[52]K.S. Kim, K.W. Ryu, C.H. Yu, and J.M. Kim, Microelectronics Reliability, Vol.45, p.647 (2005)
[53]黃家緯,"錫鋅系無鉛銲錫之研究",國立成功大學材料科學與工程學系博士論文,民國94年7月。

QR CODE