簡易檢索 / 詳目顯示

研究生: 張凱翔
KAI-HSIANG CHANG
論文名稱: 週期性控制器在高性能矩陣轉換器永磁同步電動機驅動系統的研製
Design and Implementation of Periodic Controllers for High-Performance Matrix-Converter IPMSM Drive systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
Yuan-Yih Hsu
廖聰明
Chang-Ming Liaw
徐國鎧
Kuo-Kai Shyu
林長華
Chang-Hua Lin
劉添華
Tian-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 159
中文關鍵詞: 矩陣轉換器永磁同步電動機現場可程式化邏輯閘陣列傳統週期性控制器選擇諧波週期性控制器電流諧波抑制
外文關鍵詞: matrix converter, permanent magnet synchronous motor, FPGA, classical periodic controller, selective harmonic controller, current harmonic elimination
相關次數: 點閱:286下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討週期性控制器在高性能矩陣轉換器永磁同步電動機
驅動系統的研製。文中,探討以 FPGA 達成週期性電流控制迴路,空
間向量脈波寬度調變、座標轉換、虛擬整流及三步電流換向等計算,
以期縮短運算時間。並研究以 DSP 達成週期性速度控制器,改善速
度閉迴路控制系統的性能。首先,討論永磁同步電動機的結構、特性
以及數學模型。接著,說明矩陣轉換器的架構及調變方法。然後,介
紹本文使用的 DSP 及 FPGA 實現的程式模組。其次,說明使用兩種
週期性控制器,改進電動機驅動系統的性能。其中傳統週期性控制器
以 DSP 實現,用於速度控制迴路以改善電動機的加載能力及追蹤能
力;另一方面選擇諧波週期性控制器使用 FPGA 實現,並用於電流控
制迴路以降低電流諧波量。
本文使用瑞薩公司所生產的 DSP,型號為 SH7237 與英特爾公司
所生產的 FPGA,型號為 10M16SAU169I7G 作為驅動及控制的核心。
最後,以相關的實驗結果驗證,說明本文所提方法的正確性及可行性。


This thesis proposes the design and implementation of a periodic
control for high-performance matrix-converter permanent magnet
synchronous motor (PMSM) drive systems. An FPGA is used to execute a
periodic current-controller, space vector pulse width modulation,
coordinate transformation, virtual rectifying, and three-step current
commutation to reduce the required computation time. A DSP is used to
execute a speed-controller to improve the dynamic responses. First, the
structure, characteristics, and mathematical model of the PMSM are
introduced. Then, the configuration and modulation methods of the matrix
converter are explained. After that, the program modules of the DSP and
FPGA are discussed. Next, two periodic controllers are used to improve
the performance of the PMSM drive system. A classical periodic controller
implemented by a DSP is used as the speed-loop controller to improve the
load disturbance and tracking ability. In addition, a selective harmonic
periodic controller implemented by an FPGA is used as the current-loop
controller to reduce the current harmonics.
A digital signed processor (DSP), type SH7237, made by Renesas
company, and an FPGA, type 10M16SAC169I7G, made by Intel company
are both used as the control centers. Finally, several experimental results
show the feasibility and correctness of the proposed method.

摘要........................ Abstract.................... 目錄........................ 圖目錄...................... 表目錄...................... 索引符號.................... 第一章 緒論................. 1.1 研究動機 ............... 1.2 文獻回顧 ............... 1.3 目的.................... 1.4 大綱.................... 第二章 永磁同步電動機 ...... 2.1 簡介.................... 2.2 構造與特性 ............. 2.3 數學模型 ............... 第三章 矩陣轉換器 .......... 3.1 簡介.................... 3.2 電路架構 ............... 3.3 開關切換策略 ........... 3.4 換向策略及箝位電路 ..... 第四章 DSP-FPGA 實現控制法則 4.1 簡介.................... 4.2 DSP 程式的實現.......... 4.2.1 定點運算 ............. 4.2.2 外部通訊 ............. 4.3 FPGA 程式的實現......... 4.3.1 FPGA 結構............. 4.3.2 FPGA 開發流程......... 4.3.3 回授信號模組設計 ..... 4.3.4 座標軸轉換模組實現 ... 4.3.5 積分器模組設計 ....... 4.3.6 虛擬整流模組設計 ..... 4.3.7 虛擬變頻模組設計 ..... 4.3.8 矩陣相乘與三步換向電路 第五章 控制器設計 .......... 5.1 簡介.................... 5.2 週期性速度控制器設計 ... 5.3 週期性電流控制器設計 ... 第六章 系統研製 ............ 6.1 簡介.................... 6.2 硬體電路 ............... 6.2.1 矩陣轉換器主電路 ..... 6.2.2 閘極驅動電路 ......... 6.2.3 電流及電壓偵測電路 ... 6.2.4 箝位電路 ............. 6.2.5 數位信號處理器 ....... 6.2.6 現場可程式化邏輯閘陣列 6.3 程式流程 ............... 6.3.1 DSP 主程式............ 6.3.2 DSP 中斷程式與 FPGA... 第七章 實測結果 ............ 7.1 簡介.................... 7.2 實測結果 ............... 第八章 結論與未來研究方向 .. 參考文獻....................

[1] K. Koiwa and J. Itoh, “A maximum power density design method
for nine switches matrix converter using SiC-MOSFET,” IEEE
Transactions on Power Electronics, vol. 31, no. 2, pp. 1189-1202,
April 2016.
[2] B. K. Bose, “Global energy scenario and impact of power electronics
in 21st century,” IEEE Transactions on Industrial Electronics, vol.
60, no. 7, pp. 2638-2651, June 2013.
[3] R. McElveen, B. Martin, E. Massey, and D. Stelzner, “Applying
permanent-magnet motors in an ex environment,” IEEE
Transactions on Industry Applications, vol. 50, no. 6, pp. 4363-4368,
August 2014.
[4] K. Matsuse and D. Matsuhashi, “New technical trends on adjustable
speed AC motor drives,” Chinese Journal of Electrical Engineering,
vol. 3, no. 1, pp. 1-9, July 2017.
[5] K. T. Chau, C. C. Chan, and C. Liu, “Overview of permanent-magnet
brushless drives for electric and hybrid electric vehicles,” IEEE
Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2246-2257,
May 2008.
[6] J. O. Estima and A. J. M. Cardoso, “Efficiency analysis of drive train
topologies applied to electric/hybrid vehicles,” IEEE Transactions
on Vehicular Technology, vol. 61, no. 3, pp. 1021-1031, February
2012.
[7] D. Casadei, G. Serra, and A. Tani, “The use of matrix converters in 128
direct torque control of induction machines,” IEEE Transactions on
Industrial Electronics, vol. 48, no. 6, pp. 1057-1064, December 2001.
[8] H. Wang, M. Su, Y. Sun, J. Yang, G. Zhang, W. Gui, and J. Feng,
“Two-stage matrix converter based on third-harmonic injection
technique,” IEEE Transactions on Power Electronics, vol. 31, no. 1,
pp. 533-547, March 2016.
[9] T. F. Podlesak, D. C. Katsis, P. W. Wheeler, J. C. Clare, L.
Empringham, and M. Bland, “A 150-kVA vector-controlled matrix
converter induction motor drive,” IEEE Transactions on Industry
Applications, vol. 41, no. 3, pp. 841-847, May 2005.
[10] L. Empringham, L. D. Lillo, and M. Schulz, “Design challenges in
the use of silicon carbide JFETs in matrix converter applications,”
IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2563-
2573, November 2014.
[11] N. K. Quang, N. T. Hieu, and Q. P. Ha, “FPGA-based sensorless
PMSM speed control using reduced-order extended kalman filters,”
IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp.
6574-6582, April 2014.
[12] L. C. Yu, G. T. Dunne, K. S. Matocha, K. P. Cheung, J. S. Suehle,
and K. Sheng, “Reliability issues of SiC MOSFETs: a technology
for high-temperature environments,” IEEE Transactions on Device
and Materials Reliability, vol. 10, no. 4, pp. 418-426, September
2010.
[13] J. Rodriguez, M. Rivera, J. W. Kolar, and P. W. Wheeler, “A review
of control and modulation methods for matrix converters,” IEEE
Transactions on Industrial Electronics, vol. 59, no. 1, pp. 58-70, 129
August 2012.
[14] M. Naouar, E. Monmasson, A. A. Naassani, I. S. Belkhodja, and N.
Patin, “FPGA-based current controllers for AC machine drives—a
review,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4,
pp. 1907-1925, July 2007.
[15] J. Milanovic, R. Strzelecki, and G. Benysek, Power Electronics in
Smart Electrical Energy Networks, London : Springer-Verlag, 2008.
[16] L. J. Lawson, “Precisely controlled 3-phase squirrel cage induction
motor drives for aerospace applications,” IEEE Transactions on
Aerospace, vol. AS-3, no. 2, pp. 93-97, June 1965.
[17] L. Gyugyi and B. R. Pelly, Static Power Frequency Changers:
Theory, Performance, and Application, New York : Wiley, 1976.
[18] M. G. B. Venturini and A. Alesina, “Analysis and design of
optimum-amplitude nine-switch direct AC-AC converters,” IEEE
Transactions on Power Electronics, vol. 4, no. 1, pp. 101-112,
January 1989.
[19] J. Rodriguez, “A new control technique for AC-AC converters,”
IFAC Proceedings Volumes, vol. 16, no. 16, pp. 203-208, April 1983.
[20] E. Yamamoto, H. Hara, T. Uchino, M. Kawaji, T. J. Kume, J. K.
Kang, and H. Krug, “development of MCs and its applications in
industry,” IEEE Industrial Electronics Magazine, vol. 5, no. 1, pp.
4-12, April 2011.
[21] E. Monmasson and M. N. Cirstea, “FPGA design methodology for
industrial control systems—a review,” IEEE Transactions on
Industrial Electronics, vol. 54, no. 4, pp. 1824-1842, July 2007.
[22] J. Uceda, P. Zumel, O. Garcia, T. Riesgo, and A. D. Castro, 130
“Concurrent and simple digital controller of an AC/DC converter
with power factor correction based on an FPGA,” IEEE
Transactions on Power Electronics, vol. 18, no. 1, pp. 334-343,
March 2003.
[23] P. W. Wheeler, J. Clare, and L. Empringham, “Enhancement of
matrix converter output waveform quality using minimized
commutation times,” IEEE Transactions on Industrial Electronics,
vol. 51, no. 1, pp. 240-244, February 2004.
[24] Y. Y. Tzou and H. J. Hsu, “FPGA realization of space-vector PWM
control IC for three-phase PWM inverters,” IEEE Transactions on
Power Electronics, vol. 12, no. 6, pp. 953-963, November 1997.
[25] K. Jezernik, J. Korelič, and R. Horvat, “PMSM sliding mode FPGAbased control for torque ripple reduction,” IEEE Transactions on
Power Electronics, vol. 28, no. 7, pp. 3549-3556, October 2013.
[26] E. Rogers, K. Galkowski, and D. H. Owens, Control Systems Theory
and Applications for Linear Repetitive Processes, Berlin Heidelberg :
Springer-Verlag, 2007.
[27] T. Inoue, M. Nakano, T. Kubo, S. Matsumoto, and H. Baba, “High
accuracy control of a proton synchrotron magnet power supply,”
IFAC Proceedings Volumes, vol. 14, no. 2, pp. 3137-3142, August
1981.
[28] M. Tomizuka, T. Tsao, and K. K. Chew, “Analysis and synthesis of
discrete-time repetitive controllers,” Journal of Dynamic Systems
Measurement and Control-transactions of The Asme, vol. 111, no. 3,
pp. 353-358, September 1989.
[29] T. Haneyoshi, A. Kawamura, and R. G. Hoft, “Waveform 131
compensation of PWM inverter with cyclic fluctuating loads,” IEEE
Transactions on Industry Applications, vol. 24, no. 4, pp. 582-589,
August 1988.
[30] Z. Keliang and D. Wang, “Digital repetitive controlled three-phase
PWM rectifier,” IEEE Transactions on Power Electronics, vol. 18,
no. 1, pp. 309-316, March 2003.
[31] B. Zhang, D. Wang, K. Zhou, and Y. Wang, “Linear phase lead
compensation repetitive control of a CVCF PWM inverter,” IEEE
Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1595-1602,
April 2008.
[32] G. Escobar, P. G. H. Briones, P. R. Martinez, M. H. Gomez, and R.
E. T. Olguin, “A repetitive-based controller for the compensation of
6l±1 harmonic components,” IEEE Transactions on Industrial
Electronics, vol. 55, no. 8, pp. 3150-3158, March 2008.
[33] Z. Wang, Z. Zou, K. Zhou, and M. Cheng, “Frequency-adaptive
fractional-order repetitive control of shunt active power filters,”
IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp.
1659-1668, October 2015.
[34] K. Bimal, Modern power electronics and AC drives, New York :
Prentice-Hall, 2001.
[35] B. H. Kwon, B. D. Min, and J. H. Kim, “Novel commutation
technique of AC–AC converters,” IEE Proceedings-Electric Power
Applications, vol. 145, no. 4, pp. 295-300, July 1998.
[36] K. Zhou and D. Wang, “Relationship between space-vector
modulation and three-phase carrier-based PWM: a comprehensive
analysis,” IEEE transactions on industrial electronics, vol. 49, no. 1, 132
pp. 186-196, August 2002.
[37] K. Yamazaki and S. Watari, “Loss analysis of permanent-magnet
motor considering carrier harmonics of PWM inverter using
combination of 2-D and 3-D finite-element method,” IEEE
Transactions on Magnetics, vol. 41, no. 5, pp. 1980-1983, May 2005.
[38] B. K. Bose, “Power electronics and motor drives recent progress and
perspective,” IEEE Transactions on Industrial Electronics, vol. 56,
no. 2, pp. 581-588, August 2009.
[39] J. Su, R. Gao, and I. Husain, “Model predictive control based fieldweakening strategy for traction EV used induction motor,” IEEE
Transactions on Industry Applications, vol. 54, no. 3, pp. 2295-2305,
December 2017.
[40] F. Lin, I. Sun, K. Yang, and J. Chang, “Recurrent fuzzy neural
cerebellar model articulation network fault-tolerant control of sixphase permanent magnet synchronous motor position servo drive,”
IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 153-167,
June 2016.
[41] Y. Yang, W. Lu, and K. Zhou, “Robust repetitive control scheme for
three-phase constant-voltage-constant-frequency pulse-widthmodulated inverters,” IET Power Electronics, vol. 5, no. 6, pp. 669-
677, July 2012.
[42] T. Inoue, M. Nakano, and S. Iwai, “High accuracy control of
servomechanism for repeated contouring,”Proceedings of the 10th
Annual Symposium on Incremental Motion Control Systems and
Devices-1981, pp. 258-292, 1981.
[43] W. M. Wonham and B. A. Francis, “The internal model principle of 133
control theory,” Automatica, vol. 12, no. 5, pp. 457-465, September
1976.
[44] K. Zhou and D. Wang, “Zero tracking error controller for three-phase
CVCF PWM inverter,” Electronics Letters, vol. 36, no. 10, pp. 864-
865, May 2000.
[45] R. C. Castelló, R. Grinó, and E. Fossas, “Odd-harmonic digital
repetitive control of a single-phase current active filter,” IEEE
Transactions on Power Electronics, vol. 19, no. 4, pp. 1060-1068,
July 2004.
[46] W. Lu, K. Zhou, D. Wang, and M. Cheng, “A generic digital nk±morder harmonic repetitive control scheme for PWM converters,”
IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp.
1516-1527, March 2013.
[47] K. Zhou, D. Wang, Y. Yang, and F. Blaabjerg, Periodic Control of
Power Electronic Converters, London : The Institution of
Engineering and Technology, 2016.

無法下載圖示 全文公開日期 2024/07/13 (校內網路)
全文公開日期 2026/07/13 (校外網路)
全文公開日期 2026/07/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE