簡易檢索 / 詳目顯示

研究生: 陳柏宇
Po-yu Chen
論文名稱: 以FPGA實現之高精度游標卡尺法數位至時間轉換電路
A Field-Programmable Gate Array based High Accuracy Vernier Digital-to-Time Converter
指導教授: 陳伯奇
Poki Chen
口試委員: 劉深淵
Shen-Iuan Liu
鄒應嶼
Ying-Yu Tzou
王朝欽
Chua-Chin Wang
姚嘉瑜
Chia-Yu Yao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 97
中文關鍵詞: 數位至時間轉換電路自動測試設備場可程式規劃之邏輯閘陣列數位脈衝產生器游標卡尺高精度
外文關鍵詞: DTC, ATE, FPGA, Digital Pulse Generator, Vernier, High-accuracy
相關次數: 點閱:407下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一切講求效率的時代,驅使產業界漸次朝向全面自動化發展,讓自動化測試設備(Automatic Test Equipment、簡稱ATE)的運用更為廣泛。相較於人工或半自動化測試,自動化測試設備能快速偵測產品優劣,尤其對高科技領域更為有利,不但可以加速測試速度,同時又可將人為的錯誤降到最低。其中,更可將測試系統全部內建到電路中,稱之為內建自我測試(Built-In Self Test、簡稱BIST),可以大幅簡化外部測試設備、降低測試所花費的代價。
    數位信號輸入前端模組乃是自動化測試設備最廣為應用的模組之一,該模組的主要電路是由數位至時間轉換電路(Digital-to-Time Converter、簡稱DTC)組成,經由數位控制字組(Digital Control Words),來控制一連串延遲線,並對輸入信號產生適當時間延遲,形成控制信號。將所需要的控制信號透過測試通道將控制信號傳送至待測物(Device Under Test、簡稱DUT),以測試待測物的反應,再與內部記憶體所預存結果相比較,用來斷定待測物的輸出與期望結果是否相符合,並得知待測物是否能在額定的時序規格內正常工作。
    有鑒於全客製化的研發過程相當耗時、耗費,對於發展雛型(Prototype)上造成不小的限制,為了減少研發時間、降低研發成本,本論文運用數位電路設計的角度來取代並簡化純類比電路的功能,基於游標卡尺法(Vernier)的設計原則以及相對時間延遲的手法,打破過去其他文獻以純類比實現數位至時間轉換電路的觀念,並以全數位介面的場可程式規劃之邏輯閘陣列(Field Programmable Gate Array、簡稱FPGA)平台創新開發「游標卡尺法之高精度數位至時間轉換電路」。有效解析為兩組鎖相迴路輸出週期之差值,以ALTERA公司之Stratix III FPGA晶片來實現,有效解析度可達1.58微微秒,對應之差分與整體非線性誤差只有-0.086~+0.12 LSB與-0.95~+0.75 LSB而已。在51個有效輸入位元的運作下,可操作範圍達到59.29分鐘的歷史紀錄。該FPGA可同時實現224組數位至時間轉換器,平均每個通道只需422個邏輯單元與84組暫存器而已,每個通道平均僅消耗3.3057毫瓦。同時,在0℃~85℃溫度範圍內有效解析度的變異量也只有-0.049~0.034微微秒,成效卓著。


    Nowadays, automatic test equipments (ATE) are widely adopted in the industry to increase the fabrication efficiency. Compared with manually or semi-automatic testing equipments, ATE provides not only fast defect detection, higher operation speed but also less human-made errors. Specially, it benefits the high-tech industries facing strong competitions more than ever. For further cost reduction and external instrumentation equipment simplification, built-in self-test (BIST) becomes the main stream of both academic research and industrial application for ATE.
    The digital-to-time converter (or digital pulse generator), one of the most important front end cores of digital ATE, converts the digital input to a corresponding time signal with a width proportional to the input for DUT testing and is extensively adopted by digital IC BIST circuits.
    Based on vernier principle and relative time generation, the effective resolution is made equivalent to the period difference of two phase-locked loops. Realized by ALTERA Stratix III FPGA, the finest DTC resolution of 1.58 ps is achieved. The DNL and INL are verified to be -0.086~+0.12 LSB and -0.95~+0.75 LSB respectively for input value carried from 1 to 1026. The widest operation range of 59.29 minutes is accomplished with 51 functioning input bits. Except for two shared PLLs, there are only 422 combinational ALUTs and 84 dedicated logic registers utilized per channel for 224-channel circuit implementation. The power consumption per channel is simulated to be 3.3057 mW only. Meanwhile, to demonstrate the stability of the DTC against temperature variation, the measurement was done for every 20℃ to cover the temperature operation range, 0℃~85℃, of the FPGA chip in a Programmable Temperature & Humidity Chamber. The effective resolution only deviates -0.049~0.034 ps over the temperature operation range of the FPGA chip.

    第一章 序論…………………………………………………………………………1 1-1 研究動機…………………………………………………………………1 1-2 論文編排方式……………………………………………………………3 第二章 數位至時間轉換電路………………………………………………………4 2-1 數位至時間轉換電路的簡介……………………………………………4 2-2 數位至時間轉換電路之架構介紹與說明………………………………6 2-2.1 絕對時間延遲之數位至時間轉換電路……………………………6 2-2.2 相對時間延遲之數位至時間轉換電路…………………………10 2-3 本論文電路架構…………………………………………………………14 2-3.1 游標卡尺法之高精度數位至時間轉換電路……………………14 第三章 FPGA開發板的介紹……………………………………………………24 3-1 本論文所使用之FPGA開發平台………………………………………25 3-1.1 硬體描述語言與FPGA的結合…………………………………28 3-2 鎖相迴路的介紹…………………………………………………………33 第四章 數位至時間轉換電路的設計與驗證……………………………………35 4-1 鎖相迴路之模擬與驗證…………………………………………………35 4-2 週期訊號產生器之設計與驗證…………………………………………37 4-3 輸出脈衝產生器之設計與驗證…………………………………………43 4-4 整體電路之設計與驗證…………………………………………………51 第五章 實驗量測結果與未來展望………………………………………………59 5-1 量測儀器的簡介…………………………………………………………59 5-2 量測環境的建立…………………………………………………………62 5-3 量測結果…………………………………………………………………63 5-3.1 Vertex-5數位至時間轉換電路…………………………………63 5-3.2 Stratix II GX數位至時間轉換電路………………………………69 5-3.3 Stratix III數位至時間轉換電路…………………………………74 5-4 結論與未來展望…………………………………………………………81 參考文獻……………………………………………………………………………82 圖1-1 數位積體電路測試器之前端模組整合圖……………………………………2 圖2-1 (a)以延遲線為基礎之數位至時間轉換電路;(b)時序圖……………………6 圖2-2 (a)以移位暫存器為基礎之數位至時間轉換電路;(b)時序圖………………7 圖2-3 (a)以計數器為基礎之數位至時間轉換電路;(b)時序圖……………………8 圖2-4 (a)以類比電路為基礎之數位至時間轉換電路;(b)示意圖…………………9 圖2-5 m乘n的延遲單元矩陣示意圖………………………………………………10 圖2-6 由4乘4的延遲單元矩陣所構成的數位至時間轉換電路…………………10 圖2-7 可程式化時間延遲之游標卡尺法數位至時間轉換電路…………………11 圖2-8 (a)以DLL陣列為基礎之數位至時間轉換電路;(b)示意圖………………12 圖2-9 (a)以三位元電容內插技術之數位至時間轉換電路;(b)延遲線…………13 圖2-10 游標卡尺法之時間量測時序圖……………………………………………14 圖2-11 游標卡尺法之延遲線架構圖………………………………………………15 圖2-12 游標卡尺法之數位至時間轉換時序圖……………………………………16 圖2-13 改良後的游標卡尺法之時間量測時序圖…………………………………17 圖2-14 改良後的游標卡尺法之高精度數位至時間轉換時序圖…………………18 圖2-15 以雙振盪器為基礎之數位至時間轉換電路………………………………19 圖2-16 以雙匹配鎖相迴路為基礎之數位至時間轉換電路………………………20 圖2-17 計數器之輸入處裡電路示意圖……………………………………………22 圖3-1 XILINX Virtex-5 FPGA發展板……………………………………………26 圖3-2 ALTERA Stratix II GX FPGA 發展板………………………………………26 圖3-3 ALTERA Stratix III FPGA 發展板…………………………………………27 圖3-4 簡單的二位元計數電路……………………………………………………29 圖3-5 二位元計數電路的暫存器轉換階層示意圖………………………………31 圖3-6 二位元計數電路的模擬結果………………………………………………32 圖3-7 二位元計數電路的量測結果………………………………………………32 圖3-8 鎖相迴路的電路區塊………………………………………………………33 圖3-9 簡化後的鎖相迴路架構示意圖……………………………………………33 圖4-1 鎖相迴路的模擬結果─(a)頻率訊號SF;(b)頻率訊號SS…………………35 圖4-2 鎖相迴路的模擬結果─暫存器轉換階層示意圖(一)……………………36 圖4-3 鎖相迴路的模擬結果─暫存器轉換階層示意圖(二)……………………36 圖4-4 週期訊號產生器之架構示意圖……………………………………………37 圖4-5 週期訊號產生器之時序關係圖……………………………………………38 圖4-6 週期訊號產生器的模擬結果─暫存器轉換階層示意圖…………………40 圖4-7 週期訊號產生器之模擬結果(一)─當頻率設定值為五位元的3…………41 圖4-8 週期訊號產生器之模擬結果(二)─當頻率設定值為五位元的7…………41 圖4-9 週期訊號產生器之模擬結果(三)─當頻率設定值為五位元的15………41 圖4-10 週期訊號產生器之模擬結果(四)─當頻率設定值為五位元的31………42 圖4-11 輸出脈衝產生器之架構示意圖……………………………………………43 圖4-12 輸出脈衝產生器之時序關係圖─起始訊號SStart…………………………43 圖4-13 輸出脈衝產生器之時序關係圖─結束訊號SStop…………………………44 圖4-14 輸出脈衝產生器的模擬結果─暫存器轉換階層示意圖…………………47 圖4-15 輸出脈衝訊號的模擬結果(一)─數位控制碼為3時的上升緣…………48 圖4-16 輸出脈衝訊號的模擬結果(二)─數位控制碼為3時的下降緣…………48 圖4-17 輸出脈衝訊號的模擬結果(三)─數位控制碼為15時的上升緣…………48 圖4-18 輸出脈衝訊號的模擬結果(四)─數位控制碼為15時的下降緣…………48 圖4-19 輸出脈衝訊號的模擬結果(五)─數位控制碼為31時的上升緣…………49 圖4-20 輸出脈衝訊號的模擬結果(六)─數位控制碼為31時的下降緣…………49 圖4-21 輸出脈衝訊號的模擬結果(七)─數位控制碼為63時的上升緣…………49 圖4-22 輸出脈衝訊號的模擬結果(八)─數位控制碼為63時的下降緣…………49 圖4-23 輸出脈衝訊號的模擬結果(九)─數位控制碼為127時的上升緣………50 圖4-24 輸出脈衝訊號的模擬結果(十)─數位控制碼為127時的下降緣………50 圖4-25 輸出脈衝訊號的模擬結果(十一)─數位控制碼為255時的上升緣……50 圖4-26 輸出脈衝訊號的模擬結果(十二)─數位控制碼為255時的下降緣……50 圖4-27 本論文整體電路之工作時序關係圖………………………………………51 圖4-28 整體電路的模擬結果─暫存器轉換階層示意圖…………………………54 圖4-29 整體電路的模擬結果(一)─輸出時間寬度為0微微秒…………………55 圖4-30 整體電路的模擬結果(二)─輸出時間寬度為59微微秒…………………55 圖4-31 整體電路的模擬結果(三)─輸出時間寬度為120微微秒………………55 圖4-32 整體電路的模擬結果(四)─輸出時間寬度為242微微秒………………56 圖4-33 整體電路的模擬結果(五)─輸出時間寬度為485微微秒………………56 圖4-34 整體電路的模擬結果(六)─輸出時間寬度為976微微秒………………56 圖4-35 整體電路的模擬結果(七)─輸出時間寬度為1,953微微秒……………57 圖4-36 整體電路的模擬結果(八)─輸出時間寬度為2,929微微秒……………57 圖4-37 整體電路的模擬結果(九)─輸出時間寬度為3,906微微秒……………57 圖5-1 Synthesized Clock Generator CG635…………………………………………60 圖5-2 Digital Phosphor Oscilloscope DPO70404…………………………………61 圖5-3 恆溫恆濕控制機箱(Temperature and Humidity Controlled Chamber)61 圖5-4 量測環境示意圖……………………………………………………………62 圖5-5 測試流程圖…………………………………………………………………62 圖5-6 粗調控制碼為0且細調控制碼為0─時間寬度-19.006448微微秒………63 圖5-7 粗調控制碼為0且細調控制碼為63─時間寬度2.2135906奈秒…………64 圖5-8 粗調控制碼為1且細調控制碼為0─時間寬度2.2504755奈秒…………64 圖5-9 粗調控制碼為1且細調控制碼為63─時間寬度4.4595598奈秒…………65 圖5-10 粗調控制碼為2且細調控制碼為0─時間寬度4.493311奈秒…………65 圖5-11 粗調控制碼為2且細調控制碼為63─時間寬度6.7289135奈秒………66 圖5-12 粗調控制碼為3且細調控制碼為0─時間寬度6.7648665奈秒…………66 圖5-13 Virtex-5數位至時間轉換電路─數位輸入控制碼vs.時間脈衝輸出……67 圖5-14 Virtex-5數位至時間轉換電路─差分非線性關係圖……………………67 圖5-15 Virtex-5數位至時間轉換電路─整體非線性關係圖……………………68 圖5-16 粗調控制碼為0且細調控制碼為0─時間寬度-16.905361微微秒……69 圖5-17 粗調控制碼為0且細調控制碼為511─時間寬度1.8034684奈秒………70 圖5-18 粗調控制碼為1且細調控制碼為0─時間寬度1.8074132奈秒…………70 圖5-19 粗調控制碼為1且細調控制碼為511─時間寬度3.6266624奈秒………71 圖5-20 粗調控制碼為2且細調控制碼為0─時間寬度3.6306749奈秒…………71 圖5-21 Stratix II GX數位至時間轉換電路─數位輸入碼vs.時間脈衝輸出……72 圖5-22 Stratix II GX數位至時間轉換電路─差分非線性關係圖………………72 圖5-23 Stratix II GX數位至時間轉換電路─整體非線性關係圖………………73 圖5-24 粗調控制碼為0且細調控制碼為0─時間寬度-13.004334微微秒……74 圖5-25 粗調控制碼為0且細調控制碼為512─時間寬度795.71437微微秒……75 圖5-26 粗調控制碼為1且細調控制碼為0─時間寬度797.61079微微秒………75 圖5-27 粗調控制碼為1且細調控制碼為512─時間寬度1.6068525奈秒………76 圖5-28 粗調控制碼為2且細調控制碼為0─時間寬度1.6088305奈秒…………76 圖5-29 Stratix III數位至時間轉換電路─數位輸入控制碼vs.時間脈衝輸出……77 圖5-30 Stratix III數位至時間轉換電路─差分非線性關係圖……………………77 圖5-31 Stratix III數位至時間轉換電路─整體非線性關係圖……………………78 圖5-32 ALTERA Stratix II GX與ALTERA Stratix III之溫度變異關係圖………79 表格(3-1) ─ FPGA之鎖相迴路的規格特性……………………………………34 表格(4-1) ─ 多通道之數位至時間轉換電路(邏輯單元使用數量)……………58 表格(5-1) ─ 脈鐘訊號產生器之規格特性………………………………………59 表格(5-2) ─ 數位式光儲存示波器之規格特性…………………………………60 表格(5-3) ─ 本論文電路架構之規格……………………………………………79 表格(5-4) ─ 相關文獻比較表……………………………………………………80

    [1] J. A. Gasbarro and M. A. Horowitz, “Integrated Pin Electionics for VLSI Functional Testers,” IEEE J. Solid-State Circuits, Vol.24, No.2, pp. 331~337, Apr. 1989.
    [2] J. Chapman, J. Currin and S. Payne, “A Low-Cost High-Performance CMOS Timing Vernier for ATE,” IEEE ITC, pp. 459-468, Oct. 1995.
    [3] J. Chapman, “High-Performance CMOS-Based VLSI Testers:Timing Control and Compensation,” IEEE ITC, pp. 59-67, Sept. 1992.
    [4] Robbins et al., “Low cost timing generator for automatic test equipment operating at high data rates,” U.S. Patent, No.5566188, Oct. 15, 1996.
    [5] S. Katsu, T. Ueda, M. Kazumura and G. Kano, “A GaAs Programmable Timer with 125ps Delay-Time Resolution,” IEEE ISSCC, pp. 16~17, Feb. 1988.
    [6] AD9501 digitally programmable delay generator, available from the Analog Devices, Inc., www.analog.com.
    [7] T.-I. Otsuji and N. Narumi, “A 10-ps resolution , process-Insensitive timing generator IC,” IEEE J. Solid-State Circuits, Vol.24, No.5, pp. 1412-1417, OCT. 1989.
    [8] T.-I Otsuji and N. Narumi, “A 3-ns range, 8-ps resolution, timing generator LSI utilizing Si bipolar gate array,” IEEE J. Solid-State Circuits, Vol.26, pp. 806-811, May 1991.
    [9] C.-W. Branson, “Integrated Pin Electronics for a VLSI test system,” IEEE Transaction on Industrial Electronics, Vol.36, pp. 23-27, May 1989.
    [10] Motorola, Inc., “MC10E195,” Motorola semiconductor technical data, available from the ON Semiconductor Inc., www.onsemi.com.
    [11] J. Christiansen, “An integrated high resolution CMOS timing generator based on an array of delay locked loops,” IEEE J. Solid-State Circuits, Vol.31, pp. 952-957, July 1996.
    [12] F. Baronti, L. Fanucci, D. Lunardini, R. Roncella and R. Saletti, “A High-Resolution DLL-Based Digital-to-Time Converter for DDS Applications,” IEEE International Frequency Control Symposium and PDA Exhibition, pp. 649-653, May 2002.
    [13] T.-I. Otsuji, “A picosecond-Accuracy, 700-MHz Range, Si-Bipolar Time Interval Counter LSI,” IEEE J. Solid-State Circuits, Vol.28, pp. 941-947, Sept. 1993.
    [14] T.E. Rahkonen, J.T. Kostamovaara, “The Use of Stabilized CMOS Delay Line for the Digitization of Short Time Intervals,” IEEE J. Solid-State Circuits, Vol.28, pp. 887-894, Aug. 1993.
    [15] A. Hajimiri, S. Limotyrakis and T.H. Lee, “Jitter and Phase Noise in Ring Oscillators,” IEEE J. Solid-State Circuits, Vol.34, No.6, pp. 790-804, June 1999
    [16] P. Chen, C.-C. Chen, J.-C. Zheng and Y.-S. Shen, “A PVT Insensitive Vernier-Based Time-to-Digital Converter with Extended Input Range and High Accuracy,” IEEE Trans. on Nuclear Science, Vol.54, pp. 294-302, Apr. 2007.
    [17] T.-Y. Wang, S.-M. Lin and H.-W. Tsao, “Multiple Channel Programmable Timing Generators With Single Cyclic Delay Line,” IEEE Trans. Instrum. Meas., Vol.53, pp. 1295-1303, Aug. 2004.
    [18] B. Arkin, “Realizing a Production ATE Custom Processor and Timing IC Containing 400 Independent Low-Power and High- Linearity Timing Verniers,” IEEE ISSCC, pp.348-349, Feb 2004
    [19] N. Weste and K. Eshraghian, “Principles of CMOS VLSI design,” Addison Wesley Longman, 2nd Edition, 1994.
    [20] M. Suda, K. Yamamoto, T. Okayasu, S. Kantake, S. Sudou and D. Watanabe, “CMOS High-Speed, High-Precision Timing Generator for 4.266-Gbps Memory Test System,” IEEE ITC, pp. -866, Nov. 2005.
    [21] T. Okayasu, M. Suda, K. Yamamoto, S. Kantake, S. Sudou and D. Watanabe, “1.83ps-Resolution CMOS Dynamic Arbitrary Timing Generator for >4GHz ATE Applications,” IEEE ISSCC, pp. 2122- 2131, Feb. 2006.
    [22] Verilog FPGA晶片設計, 林灶生, 劉紹漢編著
    [23] J. Wu, Z. Shi and I. Y. Wang, “Firmware-only Implementation of Time-to-Digital Converter (TDC) in Field-Programmable Gate Array (FPGA),” IEEE Nuclear Science Symposium Conference Record, Vol.1, pp. 19-25, Oct. 2003.
    [24] J. Song, Q. An and S. Liu, “A High-Resolution Time-to-Digital converter Inplemented in Field-Programmable-Gate-Arrays,” IEEE Transactions on Nuclear Science, Vol.53, No.1, pp. 236-241, Feb. 2006.
    [25] H. Zhang, X. Li and Y. Bian, “High-Resolution and Multi-Channel Time Interval Counter Using Time-to-Digital Converter and FPGA,” IEEE International Frequency Control Symposium, pp. 1324-1326, June 2007.
    [26] P. Chen, M.-C. Shie, Z.-Y. Zheng, Z.-F. Zheng and C.-Y. Chu, “A Fully Digital Time Domain Smart Temperature Sensor Realized with 140 FPGA Logic Elements,” IEEE Transactions on Circuits and Systems I, Vol.54, pp. 2661-2668, Dec. 2007.
    [27] “ML505 and ML506 Evalution Platform: User Guide,” available from the Xilinx Corporation, www.xilinx.com.
    [28] “Stratix II GX EPS2GX90 Transceiver Signal Integrity Development Board: Reference Manual,” available from the Altera Corporation, www.altera.com.
    [29] “Datasheet: ALTERA DE3 Development and Education Board User Manual,” available from the Terasic Technologies Inc., www.terasic.com.
    [30] “Virtex-5 FPGA datasheet: DC and Switching Characteristics,” available from the Xilinx Corporation, www.xilinx.com.
    [31] “PLLs in Stratix II and Stratix II GX,” available from the Altera Corporation, www.altera.com.
    [32] “Stratix II GX Device Handbook: DC and Switching Characteristics,” available from the Altera Corporation, www.altera.com.
    [33] “Clock Networks and PLLs in Stratix III Devices,” available from the Altera Corporation, www.altera.com.
    [34] “Stratix III Device Datasheet: DC and Switching Characteristics,” available from the Altera Corporation, www.altera.com.
    [35] “Datasheet: Synthesized Clock Generator CG635-DC to 2.05 GHz low-jitter clock generator,” available from the Standard Research System Inc., www.thinkSRS.com.
    [36] “Datasheet: Digital Phosphor Oscilloscopes and Digital Serial Analyzers,” available from the Agilent Corporation, www.agilent.com.
    [37] 81110A 165/330MHz Pulse/Data Generator, available from the Agilent Corporation, www.agilent.com.

    QR CODE