簡易檢索 / 詳目顯示

研究生: 張家銘
Chia-Ming Chang
論文名稱: 適應性無速度量測感應馬達之零頻率控制與多參數同時估測
An Adaptive Speed Sensorless Induction Motor Drive for Zero Stator Frequency Control and Simultaneous Estimation of Multi-Parameters
指導教授: 劉昌煥
Chang-Huan Liu
口試委員: 劉添華
Tian-Hua Liu
施慶隆
Ching-Long Shih
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 155
中文關鍵詞: 感應馬達無量測向量控制參考模式適應性控制訊號注入回生模式模式簡化穩定化
外文關鍵詞: induction motor, sensorless vector control, model reference adaptive control, signal injection, regenerating mode, model reduction, stability
相關次數: 點閱:277下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究提出感應馬達無速度量測向量控制系統,以低轉速控制與零頻率操作為目標,設計全階模式之參考模式適應性速度估測系統,利用狀態估測誤差位移方法與低頻訊號注入技術解決零頻率之不穩定問題,提出模式簡化的方法設計降階模式系統,降低系統複雜度與簡化控制演算法則並適用於零頻率操作。除此之外,為了解決馬達參數靈敏度問題,設計全新的參考模式適應性多估測器系統,提出多輸入多輸出相互耦合系統之穩定化增益設計方法,其中多估測器同時估測系統分別包含轉速、定子電阻與轉子電阻等適應性估測器。實驗結果首先以零頻率操作、正反轉控制與零轉速控制驗證穩定化方法之正確性,最後驗證多估測器系統操作於馬達模式與回生模式之穩定度。


This research proposes control methods to achieve the goal of very low speed and zero stator frequency operation for a speed sensorless vector-controlled induction motor drive. The speed estimation is first formulated using a full-order rotor flux observer and an adaptive speed estimator. It is further improved by a phase shift technique and by an injection of a low-frequency signal. Then a model reduction technique is proposed, which reduces the computational complexity of the control algorithms and is still applicable to zero stator frequency operation. Furthermore, this research proposes a new MRAS approach due to solve the problem of motor parameter sensitivity, the estimators for rotor speed, stator resistance, and rotor resistance can be simultaneously set up, which lead to a multi-input multi-output cross-coupled dynamic system. To achieve simultaneous estimation of the three estimators, a stability criterion is established and a systematic design procedure is proposed. Experimental results are divided into two phases, the first one is presented to show the validity of the proposed methods in such driving modes as zero stator frequency, reversible speed, and zero rotor speed control. Finally, the simultaneous estimation system of three estimators is further verified by experiments, which show that the proposed control strategy stabilizes the drive in both motoring and regenerating modes.

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 符號索引 XI 第一章 緒論 1 第二章 感應馬達無速度量測向量控制 5 2.1 感應馬達數學模型 5 2.2 無速度量測向量控制概述 11 2.3 零頻率零轉速控制與多參數同時估測概述 16 第三章 磁通估測器與適應性速度 估測器設計 20 3.1 全階磁通估測器設計 20 3.1.1 定子電流與轉子磁通估測器 20 3.1.2 定子電流與定子磁通估測器 21 3.1.3 定子磁通與轉子磁通估測器 22 3.2 適應性速度估測器設計 23 3.3 馬達與估測器模式簡化 28 3.4 降階模式適應性速度估測器設計 31 第四章 回生模式之全域穩定研究 35 4.1 線性化模式 35 4.2 磁通估測器之可觀測性 41 4.3 磁通估測器穩定度分析 45 4.4 回生模式之穩定化 49 4.5 全域穩定證明 51 第五章 零頻率零轉速無量測器向量控制 60 5.1 零頻率與零轉速之穩定化 60 5.1.1 全階模式之狀態估測誤差值位移法 61 5.1.2 降階模式之狀態估測誤差值位移法 66 5.2 低頻訊號注入法 72 5.2.1 低頻訊號注入原理 72 5.2.2 低頻訊號注入之無量測器向量控制系統 76 第六章 轉子轉速與定子轉子電阻 同時估測 81 6.1 定子磁通導向全階模式適應性估測器設計 81 6.2 全階模式之多估測器同時估測法則 85 6.2.1 相互耦合之三組估測器系統線性化分析 86 6.2.2 三組估測器之適應性增益設計 90 6.2.3 三組估測器系統穩定化增益設計 92 6.3 全階模式之雙估測器同時估測法則 97 6.3.1 相互耦合之兩組估測器系統線性化分析 97 6.3.2 兩組估測器之適應性增益設計 102 6.3.3 兩組估測器系統穩定化增益設計 103 第七章 實驗結果 107 7.1 實驗平台介紹 107 7.2 零頻率操作之穩定化實驗 109 7.2.1 全階模式 110 7.2.2 降階模式 113 7.3 零轉速操作之穩定化實驗 116 7.3.1 全階模式 116 7.3.2 降階模式 118 7.4 零頻率與零轉速之不穩定問題 120 7.4.1 全階模式 120 7.4.2 降階模式 121 7.5 全階模式轉子轉速與定子轉子電阻 同時估測實驗 122 7.5.1 多參數同時估測之穩定化實驗 123 7.5.2 多參數同時估測之不穩定現象 127 第八章 結論與建議 129 8.1 結論 130 8.2 建議未來研究方向 132 附錄A 134 附錄B 137 參考文獻 138 作者簡介 143

[1] del Blanco F. B., Degner M. W., and Lorenz R. D., “Dynamic analysis of current regulators for AC motors using complex vectors,” IEEE Trans. Ind. Appl., vol. 35, no. 6, pp. 1424-1432, Nov./Dec. 1999.
[2] Chen C. T., Introduction to Linear System Theory, New York, NY: Holt, Rinehart and Winston, 1970, pp. 376-377.
[3] Chang C. M., and Liu C. H., “A New MRAS Based Strategy for Simultaneous Estimation and Control of a Sensorless Induction Motor Drive,” Journal of the Chinese Institute of Engineers, vol. 33, no. 3, pp.451-462, 2010.
[4] Chang C. M., and Liu C. H., “An Adaptive Speed Sensorless Induction Motor Drive for Very Low Speed and Zero Stator Frequency Operation,” Journal of Electric Power and Components Systems, vol. 38, no. 7, 2010.
[5] Chang C. M., and Liu C. H., “The Design and Analysis of Reduced-Order Model for Vector Controlled Induction Motor Drives,” Proc.of 7th Symposium Power Electronics Conforence, Tainan, Taiwan, 2008.
[6] Depenbrock M. and Steimel A., “Discussion of “Regenerating-Mode Low-Speed Operation of Sensorless Induction Motor Drive with Adaptive Observer”, IEEE Trans. Ind. Appl., vol. 39, no. 1, pp. 1081-1086, Jul./Aug. 2003.
[7] Degner M. W. and Lorenz R. D., “Position estimation in induction machines utilizing rotor bar slot harmonics and carrier-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 736-742, May/Jun. 2000.
[8] Guidi G. and Umida H., “A novel stator resistance estimation method for speed-sensorless induction motor drives,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1619-1627, Nov./Dec. 2000.
[9] Ha J. I. and Sul S. K., “Sensorless field-oreintation control of an induction machine by high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 45-51, Jan./Feb. 1999.
[10] Harnefors L., “Design and analysis of general rotor-flux-oriented vector control systems,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 383-390, Apr. 2001.
[11] Harnefors L., “Globally stable speed-adaptive observers for sensorless induction motor drives,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1243-1245, Apr. 2007.
[12] Harnefors L. and Ottersten R., “Regenerating-mode stabilization of the “statically compensated voltage model”,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 818-824, Apr. 2007.
[13] Harnefors L. and Hinkkanen M., “Complete stability of reduced-order and full-order observers for sensorless IM drives,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1319-1329, Mar. 2008.
[14] Hinkkanen M. and Luomi J., “Parameter sensitivity of full-order flux observers for induction motors,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1127-1135, Jul./Aug. 2003.
[15] Hinkkanen M. and Luomi J., “Stabilization of regenerating-mode operation in sensorless induction motor drives by full-order flux observer design,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 1318-1328, Dec. 2004.
[16] Hinkkanen M., “Analysis and design of full-order flux observers for sensorless induction motors,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1033-1040, Oct. 2004.
[17] Hinkkanen M., Leppänen V.-M., and Loumi J., “Flux observer enhanced with low-frequency signal injection allowing sensorless zero-frequency operation of induction motors,” IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 52-59, Jan./Feb. 2005.
[18] Hofmann H. and Sanders S. R., “Speed-sensorless vector torque control of induction machines using a two-time-scale approach,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 169-177, Jan./Feb. 1998.
[19] Holtz J., “Sensorless control of induction motor drives,” Proc. IEEE, vol. 90, no. 8, pp. 1359-1394, Aug. 2002.
[20] Holtz J., “Sensorless control of induction machines—with or without signal injection,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 7-30, Feb. 2006.
[21] Kim J., Nam K., Chung J., and Sunwoo H., “Sensorless vector control scheme for induction motors based on a stator flux estimator with quadrant error compensation rule,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 492-503, Mar./Apr. 2003.
[22] Kojabadi H. M., Chang L., and Doraiswami R., “A MRAS-based adaptive pseudoreduced-order flux observer for sensorless induction motor drives,” IEEE Trans. Power Electron., vol. 20, no. 4, Jul. 2005.
[23] Kubota H., Matsuse K., Nakano T., “DSP-based speed adaptive flux observer of induction motor,” IEEE Trans. Ind. Appl., vol. 29, no. 2, pp. 344-348, Mar./Apr. 1993.
[24] Kubota H., Sato I., Tamura Y., Matsuse K., Ohta H., and Hori Y., “Regenerating-mode low-speed operation of sensorless induction motor drive with adaptive observer,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1081-1086, Jul./Aug. 2002.
[25] Leppänen V. M., and Loumi J., “Rotor flux angle tracking controller for sensorless induction motor drives,” Conf. Rec. IEEE Ind. Appl. Ann. Meet. (37th IAS), vol. 2, Pittsburgh, PA, USA, pp. 856-863, Oct. 2002.
[26] Liu C. H., Chang H. C., and Wang C. D., “Very low speed sensorless control of induction motor drives using high-frequency signal injection,” Journal of the Chinese Institute of Engineers, vol. 28, No. 6, pp. 957-966, 2005.
[27] Ohtani T., Takada N., and Tanaka K., “Vector control of induction motor without shaft encoder,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 157-164, Jan./Feb. 1992.
[28] Ohyama K., Asher G. M., and Sumner M., “Comparative analysis of experimental performance and stability of sensorless induction motor drives,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 178-186, Feb. 2006.
[29] Rashed M., Stronach F., and Vas P., “A new stable MRAS-based speed and stator resistance estimators for sensorless vector control induction motor drive at low speeds,” Conf. Rec. IEEE Ind. Appl. Ann. Meet. (38th IAS), vol. 2, pp. 1181-1188, Oct. 2003.
[30] Rashed M., Stronach F., and Vas P., “A stable MRAS-based sensorless vector control induction motor drive at low speeds,” IEEE International Electric Machines and Drives Conference (IEMDC’03), vol. 1, Madison, Wisconsin, USA, pp.139-144, Jun. 2003.
[31] Robyns B., Berthereau F., Cossart G., Chevalier L., Labrique F., and Buyse H., “A methodology to determine gains of induction motor flux observers based on a theoretical parameter sensitivity analysis,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 983-995, Nov. 2000.
[32] Saejia M., and Sangwongwanich S., “Averaging analysis approach for stability analysis of speed-sensorless induction motor drives with stator resistance estimation,” IEEE Trans. Ind. Electron., vol. 53, no. 1, Feb. 2006.
[33] Schauder C., “Adaptive speed identification for vector control of induction motors without rotational transducers,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1054-1061, Sep./Oct. 1992.
[34] Suwankawin S., and Sanngwongwanich S., “A speed-sensorless IM drive with decoupling control and stability analysis of speed estimation,” IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 444-455, Apr. 2002.
[35] Suwankawin S., and Sangwongwanich S., “Design strategy of an adaptive full-order observer for speed-sensorless induction-motor drives-tracking performance and stabilization,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 96-119, Feb. 2006.
[36] Tajima H., Guidi G., and Umida H., “Consideration about problems and solutions of speed estimation method and parameter tuning for speed-sensorless vector control of induction motor drives,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1282-1289, Sep./Oct. 2002.
[37] Teske N., Asher G. M., Sumner M., and Bradley K. J., “Analysis and suppression of high-frequency inverter modulation in sensorless position-controlled induction machine drives,” IEEE Trans. Ind. Appl., vol. 39, no. 1, pp. 10-18, Jan./Feb. 2003.
[38] Vasic´V., Vukosavic S. N., and Levi E., “A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives,” IEEE Trans. Energy Convers., vol. 18, no. 4, pp. 476-483, Dec. 2003.
[39] Yang G., and Chin T. H., “Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive,” IEEE Trans. Ind. Appl., vol. 29, no. 4, pp. 820-825, Jul./Aug. 1993.
[40] Zhen L., and Xu L., “Sensorless field orientation control of induction machines based on a mutual MRAS scheme,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 824-831, Oct. 1998.
[41] 劉昌煥,交流電機控制-向量控制與直接轉矩控制原理 第四版,東華書局,民國97年。

QR CODE