簡易檢索 / 詳目顯示

研究生: 洪嘉劭
Chia-Shao Hung
論文名稱: 基於高效能智慧型分割之影像增強及二值化演算法
Efficient Adaptive Segmentation Based Contrast Enhancement and Image Binarization
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 陳維美
none
林昌鴻
none
姚智原
none
蔡坤霖
none
紀宗衡
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 86
中文關鍵詞: 影像分割智慧型分割影像增強二值化
外文關鍵詞: image segmentation, adaptive segmentation, contrast enhancement, image binarization
相關次數: 點閱:322下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 影像分割是一種將輸入圖片分解為更適合處理之區塊的演算法。因為此種特性,影像分割如今廣泛的被使用在影像處理的領域,然而當傳統的分割演算法被使用在影像增強或影像二值化的領域時,由於同一區塊中的像素同質性過高,容易發生過度/不足的增強效果或是在二值化時產生前景/背景的誤判。為了解決此類問題,我們提出了一種新的智慧型區塊分割法來增加影像增強或影像二值化的輸出品質。
    影像增強是一種增加影像對比度,以期能提供更清晰之輸出的演算法。在使用智慧型區塊分割法於此種演算法時,由於可以採計到更多的區塊資訊做為參考,與一般的直方圖等化法比起來能提供更好的品質。此種方法的運作,首先是將輸入影像依據邊緣偵測資訊分割為許多大小不依的區塊。在分割結束後,每一個獨立的區塊將以Bilateral Bezier Curve方法進行轉換式的計算,而適用於全圖的轉換式將會由各別轉換式以加權的方式組成。
    二值化做為一種把灰階影像轉換為二元影像的演算法,被廣泛的使用在影像辨識的領域。當把智慧型區塊分割演算法使用於影像二值化時,也同樣可以提供高品質的輸出。在使用上,首先輸入影像也將會依據像素的特性分割為許多大小不一的區塊。每一獨立的區塊接下來會依據區塊內像素的平均值及標準差做出分類:有較低平均值及較高標準差的區塊將以Otsu法做進一步的處理;較低平均值及標準差者可以被認為僅包含前景像素;其餘的區塊則被認為僅包含背景像素。
    就結果來說,以智慧型區塊分割後個別處理每個區塊,因有效增加許多參考資訊從而提供更好的輸出品質。本篇論文的實驗部分也提供了很好的佐證:此類演算法可以提供更快速,更高品質以及更低的邊緣遺失率。


    Image segmentation has been used widely in the area of image processing nowadays.Aiming at representing input image in a way which is easier to analysis, the precess makes the collection of local information for accurate calculation possible.However, when using this kind of technique on contrast enhancement or image binarization, traditional segmentation processes will cause the decrement of result quality due to ignore nearby pixels on edge pixels.In order to solve the problem, we propose intelligent block segmentation (IBS) based methods on both contrast enhancement and image binarization.
    Contrast enhancement involves transforming the intensity from the original state to feature significant impact on display devices.When using IBS on this kind of algorithms, the proposed one can provide both high quality and low edge loss rate.Firstly, the image will be segmented into different sized sub-images according to pixel characteristics.The local transform function of each sub-image will then be calculated by Bilateral Bezier Curve histogram equalization method.Once all local functions are calculated, the global transform function can be estimated by combining all functions together with weighting.
    Image binarization, however, is a process of converting gray-level into binary ones.The related algorithms can be classified as either high quality computation or high performance.After the input image is segmented, each sub-image will be classified as belonging to foreground or background ones.To sum up, by using IBS the result quality of both methods are increased.Experimental results also reveal that these methods can both providing high quality and effectiveness.

    Chinese Abstract ii English Abstract iv Acknowledgements vi Table of Contents viii List of Tables x List of Figures xi 1 Introduction 1 2 Related Works 8 3 Methodology 26 4 Experimental Result 37 5 Conclusions 65 References 66

    [1] V. J. Schmid, B. Whitcher, A. R. Padhani, and G.-Z. Yang, ``Quantitative analysis of dynamic contrast-enhanced mr images based on bayesian p-splines,'' Medical Imag-ing, IEEE Transactions on, vol. 28, no. 6, pp. 789--798, 2009.
    [2] D.-H. Kim and E.-Y. Cha, ``Intensity surface stretching technique for contrast enhancement of digital photography,'' Multidimensional Systems and Signal Processing, vol. 20, no. 1, pp. 81--95, 2009.
    [3] M. J. Carlotto, ``Enhancement of low-contrast curvilinear features in imagery,'' Image Processing, IEEE Transactions on, vol. 16, no. 1, pp. 221--228, 2007.
    [4] X. Xie and K.-M. Lam, ``Face recognition under varying illumination based on a 2d face shape model,'' Pattern Recognition, vol. 38, no. 2, pp. 221--230, 2005.
    [5] C.-C. Leung, K.-S. Chan, H.-M. Chan, and W.-K. Tsui, ``A new approach for image enhancement applied to low-contrast--low-illumination ic and document images,'' Pattern recognition letters, vol. 26, no. 6, pp. 769--778, 2005.
    [6] S. S. Agaian, K. Panetta, and A. M. Grigoryan, ``Transform-based image enhancement algorithms with performance measure,'' Image Processing, IEEE Transactions on, vol. 10, no. 3, pp. 367--382, 2001.
    [7] T. Arici, S. Dikbas, and Y. Altunbasak, ``A histogram modification framework and its application for image contrast enhancement,'' Image Processing, IEEE Transactions on, vol. 18, no. 9, pp. 1921--1935, 2009.
    [8] R. Schettini, A. Capra, A. Castorina, F. Gasparini, S. Corchs, and F. Marini, ``Contrast image correction method,'' Journal of Electronic imaging, vol. 19, no. 2, pp. 023 005- -023 005, 2010.
    [9] S. Lee, H. Kwon, H. Han, G. Lee, and B. Kang, ``A space-variant luminance map based color image enhancement,'' Consumer Electronics, IEEE Transactions on, vol. 56, no. 4, pp. 2636--2643, 2010.
    [10] S. Lee, Y.-H. Kim, and V. H. Ha, ``Dynamic range compression and contrast enhancement for digital images in the compressed domain,'' Optical Engineering, vol. 45, no. 2, pp. 027 008--027 008, 2006.
    [11] H. Cheng, R. Min, and M. Zhang, ``Automatic wavelet base selection and its appli-cation to contrast enhancement,'' Signal Processing, vol. 90, no. 4, pp. 1279--1289, 2010
    [12] Y.-T. Kim, ``Contrast enhancement using brightness preserving bi-histogram equal-ization,'' Consumer Electronics, IEEE Transactions on, vol. 43, no. 1, pp. 1--8, 1997.
    [13] S.-D. Chen and A. R. Ramli, ``Minimum mean brightness error bi-histogram equalization in contrast enhancement,'' Consumer Electronics, IEEE Transactions on, vol. 49, no. 4, pp. 1310--1319, 2003.
    [14] Z.-G. Wang, Z.-H. Liang, and C.-L. Liu, ``A real-time image processor with combining dynamic contrast ratio enhancement and inverse gamma correction for pdp,'' Displays, vol. 30, no. 3, pp. 133--139, 2009.
    [15] F.-C. Cheng, ``Image quality analysis of a novel histogram equalization method for image contrast enhancement,'' IEICE TRANSACTIONS on Information and Systems, vol. 93, no. 7, pp. 1773--1779, 2010.
    [16] T. Acharya and A. K. Ray, Image processing: principles and applications. John Wiley & Sons, 2005.
    [17] F.-C. Cheng and S.-C. Huang, ``Efficient histogram modification using bilateral bezier curve for the contrast enhancement,'' Journal of Display Technology, vol. 9, no. 1, pp. 44--50, 2013.
    [18] Y.-T. Peng, B.-C. Tsai, and S.-J. Ruan, ``A sub-image edge preservation method for histogram equalization,'' in Information, Communications and Signal Processing (ICICS) 2013 9th International Conference on. IEEE, 2013, pp. 1--4.
    [19] C. Y. Suen, L. Lam, D. Guillevic, N. W. Strathy, M. Cheriet, J. N. Said, and R. Fan, ``Bank check processing system,'' International Journal of Imaging Systems and Tech-nology, vol. 7, no. 4, pp. 392--403, 1996.
    [20] M. Cheriet, J. N. Said, and C. Y. Suen, ``A formal model for document processing of business forms,'' Document Analysis and Recognition, Proceedings of the Third International Conference on, vol. 1, pp. 210 -- 213, 1995.
    [21] H. A. Hegt, R. J. De La Haye, and N. A. Khan, ``A high performance license plate recognition system,'' International Conference on Systems, Man and Cybernetics, vol. 5, pp. 4357--4362, 1998.
    [22] Y.-T. Pai, Y.-F. Chang, and S.-J. Ruan, ``Adaptive thresholding algorithm: Efficient computation technique based on intelligent block detection for degraded document images,'' Pattern Recognition, vol. 43, no. 9, pp. 3177--3187, 2010.
    [23] Y.-H. Chiu, K.-L. Chung, W.-N. Yang, Y.-H. Huang, and C.-H. Liao, ``Parameter-free based two-stage method for binarizing degraded document images,'' Pattern Recognition, vol. 45, no. 12, pp. 4250--4262, 2012.
    [24] P. K. Sahoo, S. Soltani, and A. K. Wong, ``A survey of thresholding techniques,'' Computer vision, graphics, and image processing, vol. 41, no. 2, pp. 233--260, 1988.
    [25] N. Otsu, ``A threshold selection method from gray-level histograms,'' Automatica, vol. 11, no. 285-296, pp. 23--27, 1975.
    [26] W.-H. Tsai, ``Moment-preserving thresolding: A new approach,'' Computer Vision, Graphics, and Image Processing, vol. 29, no. 3, pp. 377--393, 1985.
    [27] G. Johannsen and J. Bille, ``A threshold selection method using information measures,'' ICPR, vol. 82, pp. 140--143, 1982.
    [28] J. Kapur, P. K. Sahoo, and A. K. Wong, ``A new method for gray-level picture thresholding using the entropy of the histogram,'' Computer vision, graphics, and image processing, vol. 29, no. 3, pp. 273--285, 1985.
    [29] O. D. Trier and T. Taxt, ``Evaluation of binarization methods for document images,''IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 3, pp. 312--315, 1995.
    [30] W. Niblack, An introduction to digital image processing. Strandberg Publishing Company, 1985.
    [31] J. Sauvola and M. Pietikainen, ``Adaptive document image binarization,'' Pattern recognition, vol. 33, no. 2, pp. 225--236, 2000.
    [32] S. Beucher, ``Watershed, hierarchical segmentation and waterfall algorithm,'' Math-ematical morphology and its applications to image processing, vol. 2, pp. 69--76, 1994
    [33] I. Manousakas, P. Undrill, G. Cameron, and T. Redpath, ``Split-and-merge segmentation of magnetic resonance medical images: performance evaluation and extension to three dimensions,'' Computers and Biomedical Research, vol. 31, no. 6, pp. 393-- 412, 1998.
    [34] A. Cheddad, D. Mohamad, and A. A. Manaf, ``Exploiting voronoi diagram properties in face segmentation and feature extraction,'' Pattern recognition, vol. 41, no. 12, pp. 3842--3859, 2008.
    [35] F-measure. http:// nlp.stanford.edu/ ir-book/ html/ htmledition/ evaluation-of-clustering-1.html.
    [36] DIBCO. http://utopia.duth.gr/ipratika/dibco2013/index.html.

    QR CODE