簡易檢索 / 詳目顯示

研究生: 賴郁仁
Yu-Ren Lai
論文名稱: 應用於指靜脈辨識系統之有效率的對比增強法
Efficient Contrast Enhancement for Finger-Vein Recognition System
指導教授: 姚智原
Chih-Yuan Yao
口試委員: 鍾國亮
Kuo-Liang Chung
阮聖彰
Shanq-Jang Ruan
郭景明
Jing-Ming Guo
林昭宏
Chao-Hung Lin
王昱舜
Yu-Shuen Wang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 95
中文關鍵詞: 對比增強直方圖等化指靜脈辨識
外文關鍵詞: contrast enhancement, histogram equalization, finger-vein recognition system
相關次數: 點閱:477下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物特徵辨識技術主要利用生物個體、如人類,其特徵的差異性,來達到區分與辨識生物個體之目的。近年來是個應用相當廣泛,且十分熱門的技術。生物特徵主要包括指靜脈、指紋、虹膜、視網膜、手掌紋、語音、臉、體形等。而其中又以指紋辨識發展最為長久與全面,主要原因為人類手指特徵擷取方便,手指個數也最多,因此更能增加辨識技術之安全性。然而,指紋暴露在外容易受到破壞,且十分容易遭到仿冒。所以,手指靜脈遂成為生物特徵辨識技術的新寵兒。除了保留利用手指便於擷取特徵的優點,由於靜脈位於手指指內,不容易被外在因素干擾。另一方面,若靜脈內血液停止流動,將因無紅外線反射而偵測不到靜脈之結構與形狀,進而達到生物活體防偽的功能。基於以上原因本篇論文提出指靜脈辨識系統,結合指靜脈形成的拓普結構與影像品質量尺測量指靜脈影像的相似度,利用其互補的特性達到良好的辨識效果。基於公開的與自製的指靜脈資料庫,實驗結果顯示本篇論文所提出的指靜脈辨識系統的辨識率優於其它已發表之指靜脈辨識系統。因此,本系統有極大的潛力與競爭力能應用於生活的各個層面,以造福人群。本論中使用之指靜脈紅外線擷取設備有著極低成本的優點,但也因此造成了所拍攝的指靜脈影像模糊與低對比,所以在辨識個體的指靜脈之前,影像首先需要使用對比增強法處理。因此,本論文提出一種區域式對比增強的方法以改善影像過度與不足的對比增強。此方法首先保留區域式對比增強的效果,但利用非重疊式的影像分割法,加速傳統區域式對比增強的執行速度;接著,利用雙向貝齊爾曲線將子影像的連續累積分佈進行平滑化,以改善區域式的對比增強中,所產生的過度增強不良效果。最後,利用權重關係結合各子影像的轉換函數,利用此轉換函數增強影像對比。基於不同特性的測試影像與各種主客觀評估,此方法能大幅改善模糊影像的對比,提供良好的辨識效率,以利於實際應用在辨識系統之上。我們利用所提出的對比增強方法增進擷取到的指靜脈可辨識性與辨識系統之效能。


    Various personal authentication systems have been extensively used in numerous civilian
    applications because of the continual growth in the demands on security systems in
    recent years. Biometrics has received considerable attention and has been extensively
    used for identifying individuals in personal authentication systems. This thesis presents
    a novel finger-vein recognition system based on the enhanced finger-vein images. To
    achieve this, the system first identifies regions-of-interest from the captured images, and
    then determines their skeleton topologies, which are used to analyze the similarities and
    differences between finger-vein patterns. The system exhibited encouraging experimental
    results in differentiating individuals, but failed in classifying some extreme cases of ambiguous
    features. Consequently, an additional image quality assessment stage is borrowed
    to enhance the recognition accuracy. As demonstrated in the experimental results, the
    proposed extended strategy substantially improves upon the skeleton topology matchingonly
    approach. The performance of the proposed method outperforms the existing systems
    with the published databases and our own databases. The twofold examined finger-vein
    recognition system exhibits great potential as a competitive biometric, and thus the practical
    applications of which are vast. However, the captured finger-vein images are blurred
    and low-contrast by the implemented low-cost near-infrared imaging device. Therefore,
    the captured finger-vein image needs to be enhanced by the proposed contrast enhancement
    method. Consequently, this thesis presents a novel local histogram equalization by
    combining the transformation functions of the non-overlapped sub-images based on the
    gradient information for edge preservation and better visualization. To ameliorate the
    problems of the over- and under-enhancement produced by conventional local histogram
    equalization, the bilateral Bezier curve-based histogram modification strategy is first employed
    to modify the significant and insufficient changes of each cumulative distribution
    in each sub-image. Yet, the gradient information has not been considered, and the cumulative
    distribution of some enhanced sub-images are still significant or insufficient because
    of the over- and under-enhancement, respectively. Therefore, the key insight of the proposed
    method is that the transformation functions of the partitioned sub-images will be
    weighed and combined based on the proportion of gradients to preserve the image texture.
    In addition, the input image is separated into the non-overlapped sub-images for reducing
    the time complexity. Based on the eight representative test images and mean opinion
    score, the experimental results demonstrate that the proposed method is quite competitive
    with four state-of-the-art histogram equalization methods in the literature. Furthermore,
    according to the subjective evaluation, it is observed that the proposed method can also
    apply to the practical applications and achieve good visual quality.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1 Related Works of Contrast Enhancement . . . . . . . . . . . . . . . . . . 14 2.2 Category of Finger-Vein Recognition System . . . . . . . . . . . . . . . 19 2.2.1 Clear Image Demand . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Time Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1 Proposed Local Histogram Equalization Methods . . . . . . . . . . . . . 24 3.1.1 The image partition and local histogram equalization . . . . . . . 25 3.1.2 The histogram modification by the bilateral Bezier curve . . . . . 28 3.1.3 The transformation function combination with the gradient information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Proposed Finger-Vein Recognition System . . . . . . . . . . . . . . . . . 34 3.2.1 Preprocessing: ROI Extraction . . . . . . . . . . . . . . . . . . . 34 3.2.2 Multi-level Vein Skeleton Generation and Matching . . . . . . . 36 3.2.3 ROI Alignment and the IQA Matching Method . . . . . . . . . . 47 3.2.4 Proposed Hybrid Matching Score . . . . . . . . . . . . . . . . . 52 4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 Performance of Proposed Contrast Enhancement . . . . . . . . . . . . . 55 4.1.1 Qualitative Comparisons . . . . . . . . . . . . . . . . . . . . . . 57 4.1.2 Comparison of execution time . . . . . . . . . . . . . . . . . . . 63 4.1.3 Comparison of Finger-Vein Enhancement . . . . . . . . . . . . . 65 4.2 Performance of the Proposed Finger-Vein Recognition System . . . . . . 66 4.2.1 Impact of the Proposed Skeleton Matching . . . . . . . . . . . . 70 4.2.2 Performance Comparisons Against Former Schemes . . . . . . . 72 4.2.3 Execution Time of the Proposed System . . . . . . . . . . . . . . 77 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 授權書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    [1] A. Kumar and K. Prathyusha, “Personal authentication using hand vein triangulation
    and knuckle shape,” Image Processing, IEEE Transactions on, vol. 18, no. 9,
    pp. 2127–2136, 2009.
    [2] H. Lee, S. Lee, T. Kim, and H. Bahn, “Secure user identification for consumer
    electronics devices,” Consumer Electronics, IEEE Transactions on, vol. 54, no. 4,
    pp. 1798–1802, 2008.
    [3] K. Lee and H. Byun, “A new face authentication system for memory-constrained
    devices,” Consumer Electronics, IEEE Transactions on, vol. 49, no. 4, pp. 1214–
    1222, 2003.
    [4] W. Li, J. You, and D. Zhang, “Texture-based palmprint retrieval using a layered
    search scheme for personal identification,” Multimedia, IEEE Transactions on,
    vol. 7, no. 5, pp. 891–898, 2005.
    [5] D. Zhang, W. Kong, J. You, and M. Wong, “Online palmprint identification,” Pattern
    Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 9, pp. 1041–
    1050, 2003.
    [6] H. Proenca, “Iris recognition: On the segmentation of degraded images acquired in
    the visible wavelength,” Pattern Analysis and Machine Intelligence, IEEE Transactions
    on, vol. 32, no. 8, pp. 1502–1516, 2010.
    [7] R. Cappelli, D. Maio, A. Lumini, and D. Maltoni, “Fingerprint image reconstruction
    from standard templates,” Pattern Analysis and Machine Intelligence, IEEE Transactions
    on, vol. 29, no. 9, pp. 1489–1503, 2007.
    [8] T. Jea and V. Govindaraju, “A minutia-based partial fingerprint recognition system,”
    Pattern Recognition, vol. 38, no. 10, pp. 1672 – 1684, 2005.
    [9] A. Kumar and Y. Zhou, “Human identification using finger images,” Image Processing,
    IEEE Transactions on, vol. 21, no. 4, pp. 2228–2244, 2012.
    [10] F. Liu, G. Yang, Y. Yin, and X. Xi, “Finger-vein recognition based on fusion of
    pixel level feature and super-pixel level feature,” in Biometric Recognition (Z. Sun,
    S. Shan, G. Yang, J. Zhou, Y. Wang, and Y. Yin, eds.), vol. 8232 of Lecture Notes in
    Computer Science, pp. 274–281, Springer International Publishing, 2013.
    [11] Z. Liu and S. Song, “An embedded real-time finger-vein recognition system for mobile
    devices,” Consumer Electronics, IEEE Transactions on, vol. 58, no. 2, pp. 522–
    527, 2012.
    [12] N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns
    based on repeated line tracking and its application to personal identification,” Mach.
    Vision Appl., vol. 15, pp. 194–203, Oct. 2004.
    [13] K. R. Park, “Finger vein recognition by combining global and local features based
    on svm,” Computing and Informatics, pp. 295–309, 2011.
    [14] H. Qin, C. Yu, and L. Qin, “Region growth–based feature extraction method for
    finger-vein recognition,” Optical Engineering, vol. 50, no. 5, pp. 057208–057208–
    8, 2011.
    [15] W. Song, T. Kim, H. Kim, J. Choi, H. Kong, and S. Lee, “A finger-vein verification
    system using mean curvature,” Pattern Recognition Letters, vol. 32, no. 11, pp. 1541
    – 1547, 2011.
    [16] D. Wang, J. Li, and G. Memik, “User identification based on finger-vein patterns
    for consumer electronics devices,” Consumer Electronics, IEEE Transactions on,
    vol. 56, no. 2, pp. 799–804, 2010.
    [17] J. Wu and C. Liu, “Finger-vein pattern identification using {SVM} and neural network
    technique,” Expert Systems with Applications, vol. 38, no. 11, pp. 14284 –
    14289, 2011.
    [18] J. Wu and S. Ye, “Driver identification using finger-vein patterns with radon transform
    and neural network,” Expert Systems with Applications, vol. 36, no. 3, Part 2,
    pp. 5793 – 5799, 2009.
    [19] Y. Xin, Z. Liu, H. Zhang, and H. Zhang, “Finger vein verification system based on
    sparse representation.,” Appl Opt, vol. 51, no. 25, pp. 6252–8, 2012.
    [20] W. Yang, G. Ma, W. Li, and Q. Liao, “Finger vein verification based on neighbor
    pattern coding.,” IEICE Transactions on Information and Systems, vol. 96-D, no. 5,
    pp. 1227–1229, 2013.
    [21] W. Yang, Q. Rao, and Q. Liao, “Personal identification for single sample using finger
    vein location and direction coding,” in Hand-Based Biometrics (ICHB), 2011
    International Conference on, pp. 1–6, Nov 2011.
    [22] P. Campbell and S. Abhyankar, “Fractals, form, chance and dimension,” The Mathematical
    Intelligencer, vol. 1, no. 1, pp. 35–37, 1978.
    [23] Y. Yin, L. Liu, and X. Sun, “Sdumla-hmt: A multimodal biometric database.,” in
    CCBR (Z. Sun, J.-H. Lai, X. Chen, and T. Tan, eds.), vol. 7098 of Lecture Notes in
    Computer Science, pp. 260–268, Springer, 2011.
    [24] D. Hartung, A. Pflug, and B. C., “Vein pattern recognition using chain codes spatial
    information and skeleton fusing,” in Sicherheit’12, pp. 245–256, 2012.
    [25] J. Yang, Y. Shi, J. Yang, and L. Jiang, “A novel finger-vein recognition method with
    feature combination,” in Image Processing (ICIP), 2009 16th IEEE International
    Conference on, pp. 2709–2712, Nov 2009.
    [26] D. Zhang, Z. Guo, G. Lu, L. Zhang, Y. Liu, and W. Zuo, “Online joint palmprint and
    palmvein verification,” Expert Systems with Applications, vol. 38, no. 3, pp. 2621 –
    2631, 2011.
    [27] Z. Wang, E. Simoncelli, and A. Bovik, “Multi-scale structural similarity for image
    quality assessment,” in in Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers,
    (Asilomar, pp. 1398–1402, 2003.
    [28] R. Gonzalez and R. Woods, Digital Image Processing. Boston, MA, USA: Addison-
    Wesley Longman Publishing Co., Inc., 2nd ed., 2001.
    [29] J. Stark, “Adaptive image contrast enhancement using generalizations of histogram
    equalization,” Image Processing, IEEE Transactions on, vol. 9, no. 5, pp. 889–896,
    2000.
    [30] M. Abramowitz and I. Stegun, Handbook of mathematical functions: with formulas,
    graphs, and mathematical tables. Courier Dover Publications, 2012.
    [31] J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filters,” Proceedings of the
    IEEE, vol. 78, no. 4, pp. 678–689, 1990.
    [32] L. Lam, S. Lee, and C. Suen, “Thinning methodologies-a comprehensive survey,”
    Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 14, no. 9,
    pp. 869–885, 1992.
    [33] N. Miura, A. Nagasaka, and T. Miyatake, “Extraction of finger-vein patterns using
    maximum curvature points in image profiles,” IEICE - Trans. Inf. Syst., vol. E90-D,
    pp. 1185–1194, Aug. 2007.
    [34] L. Zhang, R. Zhang, and Y. C.B., “Study on the identity authentication system on
    finger vein,” in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008.
    The 2nd International Conference on, pp. 1905–1907, May 2008.
    [35] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from
    error visibility to structural similarity,” Image Processing, IEEE Transactions on,
    vol. 13, no. 4, pp. 600–612, 2004.
    [36] A. Celebi, R. Duvar, and O. Urhan, “Fuzzy fusion based high dynamic range imaging
    using adaptive histogram separation,” IEEE Transactions on Consumer Electronics,
    vol. 61, no. 1, pp. 119–127, 2015.
    [37] H. Choi and P. Rhee, “Head gesture recognition using hmms,” Expert Systems with
    Applications, vol. 17, no. 3, pp. 213–221, 1999.
    [38] A. De la Torre, A. Peinado, J. Segura, J. Perez-Cordoba, M. Benitez, and A. Rubio,
    “Histogram equalization of speech representation for robust speech recognition,”
    IEEE Transactions on Speech and Audio Processing, vol. 13, no. 3, pp. 355–366,
    2005.
    [39] A. Franco and L. Nanni, “Fusion of classifiers for illumination robust face recognition,”
    Expert Systems with Applications, vol. 36, no. 5, pp. 8946–8954, 2009.
    [40] U. Ghanekar, A. Singh, and R. Pandey, “A contrast enhancement-based filter for
    removal of random valued impulse noise,” IEEE Signal Processing Letters, vol. 17,
    no. 1, pp. 47–50, 2010.
    [41] M. Kang, B. Kim, and K. Sohn, “Ciecam02-based tone mapping technique for color
    image contrast enhancement,” Optical Engineering, vol. 48, no. 8, p. 087001, 2009.
    [42] W. Kao, J. Ye, M. Chu, and C. Su, “Image quality improvement for electrophoretic
    displays by combining contrast enhancement and halftoning techniques,” IEEE
    Transactions on Consumer Electronics, vol. 55, no. 1, pp. 15–19, 2009.
    [43] S. Pei, Y. Zeng, and C. Chang, “Virtual restoration of ancient chinese paintings using
    color contrast enhancement and lacuna texture synthesis,” IEEE Transactions on
    Image Processing, vol. 13, no. 3, pp. 416–429, 2004.
    [44] A. Wahab, S. Chin, and E. Tan, “Novel approach to automated fingerprint recognition,”
    IEE Proceedings on Vision, Image and Signal Processing, vol. 145, no. 3,
    pp. 160–166, 1998.
    [45] C. Lee, C. Lee, and C. Kim, “Contrast enhancement based on layered difference
    representation of 2d histograms,” IEEE Transactions on Image Processing, vol. 22,
    no. 12, pp. 5372–5384, 2013.
    [46] M. Nikolova and G. Steidl, “Fast hue and range preserving histogram specification:
    Theory and new algorithms for color image enhancement,” IEEE Transactions on
    Image Processing, vol. 23, no. 9, p. 4087–4100, 2014.
    [47] J. Shin and R. Park, “Histogram-based locality-preserving contrast enhancement,”
    IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1293–1296, 2015.
    [48] S. Wang, J. Zheng, H. Hu, and B. Li, “Naturalness preserved enhancement algorithm
    for non-uniform illumination images,” IEEE Transactions on Image Processing,
    vol. 22, no. 9, pp. 3538–3548, 2013.
    [49] H. Xu, S. Jiao, G. Zhai, X. Wu, and X. Yang, “Generalized equalization model for
    image enhancement,” IEEE Transactions on Multimedia, vol. 16, no. 1, pp. 68–82,
    2013.
    [50] S. Huang, F. Cheng, and Y. Chiu, “Efficient contrast enhancement using adaptive
    gamma correction with weighting distribution,” IEEE Transactions on Image Processing,
    vol. 22, no. 3, pp. 1032–1041, 2013.
    [51] R. Gonzalez and R. Woods, Digital Image Processing (2nd). Addison-Wesley Longman
    Publishing Co., Inc., Boston, MA, USA, 2001.
    [52] S. Chen and A. Ramli, “Contrast enhancement using recursive mean-separate histogram
    equalization for scalable brightness preservation,” IEEE Transactions on
    Consumer Electronics, vol. 49, no. 4, pp. 1301–1309, 2003.
    [53] F. Cheng and S. Huang, “Efficient histogram modification using bilateral bezier
    curve for the contrast enhancement,” Journal of Display Technology, vol. 9, no. 1,
    pp. 44–50, 2013.
    [54] M. Kim and M. Chung, “Recursively separated and weighted histogram equalization
    for brightness preservation and contrast enhancement,” IEEE Transactions on
    Consumer Electronics, vol. 54, no. 3, pp. 1389–1397, 2008.
    [55] J. Kim, L. Kim, and S. Hwang, “An advanced contrast enhancement using partially
    overlapped sub-block histogram equalization,” IEEE Transactions on Circuits and
    Systems for Video Technology, vol. 11, no. 4, pp. 475–484, 2001.
    [56] Y. Kim, “Contrast enhancement using brightness preserving bi-histogram equalization,”
    IEEE Transactions on Consumer Electronics, vol. 43, no. 1, pp. 1–8, 1997.
    [57] F. Lamberti, B. Montrucchio, and A. Sanna, “Cmbfhe: a novel contrast enhancement
    technique based on cascaded multistep binomial filtering histogram equalization,”
    IEEE Transactions on Consumer Electronics, vol. 52, no. 3, pp. 966–974, 2006.
    [58] P. Sakellaropoulos, L. Costaridou, and G. Panayiotakis, “A wavelet-based spatially
    adaptive method for mammographic contrast enhancement,” Physics in Medicine
    and Biology, vol. 48, no. 6, p. 787, 2003.
    [59] K. Sim, C. Tso, and Y. Tan, “Recursive sub-image histogram equalization applied
    to gray scale images,” Pattern Recognition Letters, vol. 28, no. 10, pp. 1209–1221,
    2007.
    [60] Y. Wang, Q. Chen, and B. Zhang, “Image enhancement based on equal area dualistic
    sub-image histogram equalization method,” IEEE Transactions on Consumer
    Electronics, vol. 45, no. 1, pp. 68–75, 1999.
    [61] T. Celik, “Spatial entropy-based global and local image contrast enhancement,”
    IEEE Transactions on Image Processing, vol. 23, no. 12, pp. 5298–5308, 2014.
    [62] T. Celik and T. Tjahjadi, “Contextual and variational contrast enhancement,” IEEE
    Transactions on Image Processing, vol. 20, no. 12, pp. 3431–3441, 2011.
    [63] A. Masmoudi, R. Trabelsi, M. Krid, and D. Masmoudi, “Implementation of a fingervein
    recognition system based on improved gaussian matched filter,” MAGNT
    Research Report, vol. 2, no. 4, pp. 251–260, 2014.
    [64] W. Yang, X. Yu, and Q. Liao, “Personal authentication using finger vein pattern and
    finger-dorsa texture fusion,” in Proceedings of the 17th ACM International Conference
    on Multimedia, MM ’09, (New York, NY, USA), pp. 905–908, ACM, 2009.
    [65] T. Ong, J. Teng, K. Muthu, and A. Teoh, “Multi-instance finger vein recognition
    using minutiae matching,” in Image and Signal Processing (CISP), 2013 6th International
    Congress on, vol. 03, pp. 1730–1735, Dec 2013.
    [66] P. Tsai, C. Liang, T. Huang, and H.-H. Chen, “Image enhancement for backlightscaled
    tft-lcd displays,” IEEE Transactions on Circuits and Systems for Video Technology,
    vol. 19, no. 4, pp. 574–583, 2009.
    [67] S. Chen and A. Ramli, “Minimum mean brightness error bi-histogram equalization in
    contrast enhancement,” IEEE Transactions on Consumer Electronics, vol. 49, no. 4,
    pp. 1310–1319, 2003.
    [68] M. Eramian and D. Mould, “Histogram equalization using neighborhood metrics,”
    in Proceedings of The 2nd Canadian Conference on Computer and Robot Vision,
    pp. 397–404, 2005.
    [69] K. Panetta, E. Wharton, and S. Agaian, “Human visual system-based image enhancement
    and logarithmic contrast measure,” IEEE Transactions on Systems, Man, and
    Cybernetics, Part B: Cybernetics, vol. 38, no. 1, pp. 174–188, 2008.
    [70] KODAK, “Kodak test images database,” (Online) http://r0k.us/graphics/kodak/,
    1999.

    QR CODE