簡易檢索 / 詳目顯示

研究生: 程聖傑
Sheng-Jie Cheng
論文名稱: 以再生控制策略發展為目的之氧化觸媒/濾煙器後處理系統動態建模
Dynamic Modeling of a DOC-DPF Aftertreatment System for Regeneration Control Development
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 蘇裕軒
Yu-Hsuan Su
盧昭暉
Jau-Huai Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 78
中文關鍵詞: 濾煙器(DPF)氧化觸媒(DOC)PIPE再生
外文關鍵詞: Diesel Particulate Filter, Diesel Oxidation Catalytic, PIPE, Regeneration
相關次數: 點閱:179下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

濾煙器(Diesel Particulate Filter, DPF) 主要功能是將柴油引擎排放廢氣中之懸浮微粒(Particulate Matter, PM) 給過濾掉, 但隨時間的增長,DPF 內部累積之PM也會越來越多, 而造成引擎效能降低及排氣背壓產生的影響, 因此為了避免這種情況發生, 必須在固定的時間點內啟動再生控制, 使得PM 能隨著溫度瞬間增加而完全燃燒。為了要預測DPF 之再生, 本論文主要是建立了氧化觸媒(Diesel Oxidation Catalytic,DOC)、DPF 以及DPF 後端PIPE 之動態模型藉由輸入排氣溫度、排氣流量、PM 濃度以及排氣噴油率來預測再生之DOC/DPF/PIPE 內部變化。在模型當中考慮PM質量、反應溫度以及壓差的變化。參數鑑別的方式則是以實驗的方式來進行, 實驗內容為引擎在不同操作點下噴油實驗、再生實驗以及累積PM 實驗, 藉由這些實驗將DOC
熱傳係數、DOC 反應速率、DPF 熱傳係數、DPF 反應速率以及DPF 滲透係數給鑑別出來, 最後再以多個引擎操作點來驗證此DOC/DPF/PIPE 之動態模型, 從結果可以發現此動態模型能實際的模擬出DOC/DPF/PIPE 之各個階段的反應過程, 並且將誤差控制在合理範圍內。


The main function of Diesel Particulate Filter(DPF) is to remove the par-
ticulate matter(PM) from Diesel engine. The accumulated particulate, however,restricts the exhaust flow through the DPF and increases the back pressure which may negatively impact fuel economy. Therefore, the particulate filter needs to be regenerated by burning off the accumulated particulate, which is achieved either passively through the use of a catalyst or by actively introducing high heat into the exhaust system. In the exhaust aftertreatment system considered in this thesis, a diesel oxidation catalyst (DOC) is installed upstream of the DPF to facilitate the
regeneration process. In order to combust the captured particulate in the DPF,a small amount of fuel can be injected into the exhaust ahead of the DOC when necessary. In an effort to develop model-based control strategies that completes the regeneration while satisfies the constants such as fuel consumption, temperature and regeneration period, a physics-based dynamic model of the DOC-DPF exhaust aftertreatment system is proposed in this thesis. Parameters in the model including the heat transfer coefficient, reaction constants in the DOC and DPF,and the permeability of the filter and soot are identified based on the experimental measurements. The DOC-DPF model is then validated both at steady state and during transient against experimental data measured at various engine operating conditions, PM loads and fuel injection rates.

第一章 緒論 第二章 實驗設備 第三章 DOC/DPF/PIPE 物理模型特性 第四章 DOC/DPF/PIPE 模型驗證 第五章 結論與未來展望 附錄-實驗資訊 參考文獻

[1] “http://air.epa.gov.tw,” 行政院環境保護署/細懸浮微粒管制.
[2] 蔡瀛逸等, 柴油車氮氧化物、多環芳香烴化合物及粒狀污染物排放減量技術及策略之研究. 環保
署/國科會空汙防制科研合作計畫, 2012.
[3] T. Kuki, Y. Miyairi, Y. Kasai, M. Miyazaki, and S. Miwa, “Study on reliability of wall-flow
type diesel particulate filter,” SAE International.
[4] A. G. Konstandopoulos, E. A. Kladopoulou, S. L. H.J., and G. G. Parker, “A study describ-
ing the performance of diesel particulate filters during loading and regeneration a lumped
parameter model for control applications,” SAE International.
[5] F. Piscaglia and G. Ferrari, “Development of an offline simulation tool to test the on-board
diagnostic software for diesel after-treatment systems,” SAE International.
[6] J. Wang and P. Chen, “Control-oriented modeling and observer based estimation of solid
and gas temperatures for a diesel engine aftertreatment system,” American Society Of
Mechanical Engineers.
[7] “The new generation of diesel engines,” May 2007, taiwan Maruboshi Information Technol-
ogy Co., Ltd.
[8] A. G. Konstandopoulos, M. Kostoglou, E. Skaperdas, E. Papaioannou, D. Zarvalis, and
E. Kladopoulou, “Fundamental studies of diesel particulate filters:transient loading, regen-
eration and aging,” SAE International.
[9] D. Pinturaud, A. Charlet, C. Caillol, and P. Higelin, “Experimental study of dpf loading
and incomplete regeneration,” SAE International.
[10] J. C.Tan, C. N.Opris, J.Baumgard, and J. H.Johnson, “A study of the regeneration process
in diesel particulate traps using a copper fuel additive,” SAE International.
[11] C. T. Huynh, J. H. Johnson, S. L. Yang, S. T. Bagley, and J. R.Warner, “A one-dimensional
computational model for studying the filtration and regeneration characteristics of a cat-
alyzed wall-flow diesel particulate filter,” SAE International.
[12] P. Chen and J. Wang, “Control-oriented model for integrated diesel engine and aftertreat-
ment systems thermal management,” Control Engineering Practice.
[13] I. P. Kandylas and G. C. Koltsakis, “NO2-assisted regeneration of diesel particulate filters:
A modeling study,” American Chemical Society.
[14] O. A. Haralampous and G. C. Koltsakis, “Oxygen diffusion modeling in diesel particulate
filter regeneration,” American Institute of Chemical Engineers.
[15] G. C. Koltsakis and A. M. Stamatelos, “Modeling thermal regeneration of wall-flow diesel
particulate traps,” American Institute of Chemical Engineers.
[16] A. G. Konstandopoulos and J. Johnson, “Wall-flow diesel particulate filterstheir pressure
drop and collection efficiency,” SAE International.
[17] L. Tartakovsky, B. Aronov, and Y. Zvirin, “Modeling of the regeneration processes in diesel
particulate filters,” Energy and Power.
[18] H. N. Sharma, L. Pahalagedara, A. Joshi, S. L. Suib, and A. B. Mhadeshwar, “Experimental
study of carbon black and diesel engine soot oxidation kinetics using thermogravimetric
analysis,” American Chemical Society.
[19] “http://www.dieselnet.com,” diesel Net.
[20] A. G. Konstandopoulos and M. Kostoglou, “Reciprocating flow regeneration of soot filters,”
Combustion and Flame.
[21] L.Guzzella and C.H.Onder, Introduction to Modeling and Control of Intermal Combustion
Engine Systems. Springer, 2004.

QR CODE