簡易檢索 / 詳目顯示

研究生: 王顗銘
Yi-ming Wang
論文名稱: 快速原型系統製備之聚氨酯丙烯酸酯/1, 6-己二醇二丙烯酸酯/銅粉複合材料機械與熱性質之研究
Mechanical and Thermal Properties of Polyurethane Acrylate (PUA) / 1,6 Hexanediol Diacrylate (HDDA) /Copper Composite Fabricated by Rapid Prototyping System
指導教授: 邱士軒
Shih-hsuan Chiu
口試委員: 村上理一
Ri-ichi Murakami
溫哲彥
Che-yen Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 70
中文關鍵詞: 快速原型光硬化樹脂銅粉機械性質熱性質
外文關鍵詞: Rapid Prototyping, Photopolymer, copper, mechanical properties, thermal properties
相關次數: 點閱:293下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 快速原型系統是以層層堆疊的方式製作出模型,此製造方式,不只可以有效地降低產品的開發時間與成本,也可以製作形狀複雜的產品,但也因為材料的機械性質與熱性質較低,因此也成為應用上的阻礙。在本次研究中,由於銅粉有較高的拉神強度與熱傳導性,因此其主要目的為使用光硬化樹酯/銅粉複合材料提升材料之機械性質和熱性質,使快速原型在工業應用上更為廣泛。此研究中所使用基材為PUA/HDDA光硬化樹脂,添加銅粉來提升機械性質與熱性質。 在實驗中,利用FTIR確定光硬化樹脂照光後硬化後是否完全反應,拉伸試驗機與Shore D標準硬度計測試機械性質,TGA與熱傳導機器測試熱性質。在研究結果中,機械性質中得到最大拉伸強度為32.56Mpa,增加了45%,熱性質中最大裂解溫度為410.41℃,增加了7%,最大熱傳導率為0.393(J/(m•K)),增加了65%。


    Rapid prototyping (RP) system is the technology that fabricates model layer by layer. The technology not only can effectively reduce the development time and cost of product, but also can produce complicated product. However, the material of mechanical properties and thermal properties is poor, and become an obstacle to the application. So, in this research, the characteristic of copper powder have strong strength and high thermal properties, with adding copper to improve the material mechanical properties and thermal properties is become the propose in this research, and have wider range of rapid prototyping in the industrial applications. Test specimens were fabricated using polyurethane acrylate (PUA) and 1,6 hexanediol diacrylate (HDDA) photopolymer as matrix materials and copper powder as reinforce materials. Experiment was characterized by using FTIR to see the reaction before and after photopolymer curing, mechanical properties tested by tensile test and Shore D hardness tester, thermal properties tested by TGA and Hot Disk Thermal Constants Analyzer. As the result, in the mechanical properties the maximum of tensile strength is 32.56Mpa, improved up 45%, thermal properties of maximum degradation temperature is 410.41℃, improved up 7%, the maximum of thermal conductivity is 0.393(J/(m•K)), increased 65%.

    中文摘要 IV ABSTRACT V ACKNOWLEDGEMENT VI TABLE OF CONTENT VIII FIGURE INDEX X TABLE INDEX XI Chapter 1 . Introduction 1 1.1. Research background 1 1.2. Literature review 2 1.2.1 Rapid prototyping 2 1.2.2 Photopolymer 11 1.3. Research motivation and objective 13 1.4 Outline of the thesis 15 Chapter 2 . Basic Theory 16 2.1. Rapid prototyping system 16 2.2. Photopolymer in rapid prototyping 18 2.2.1 Photopolymer material 19 2.2.2 Introduction of polyurethane acrylate 20 2.2.3 Polymerization 21 Chapter 3 . Material And Experiment 24 3.1. Reagents 24 3.2. Composition material preparation 25 3.3. Equipment 27 Chapter 4 . Results And Discussions 34 4.1. Analysis of photo-curing behavior properties 34 4.2. Morphology analysis 37 4.3. Analysis of mechanical properties 42 4.3.1 Tensile testing 42 4.3.2 Hardness 45 4.4. Analysis of thermal properties 46 4.4.1 TGA 46 4.4.2 Thermal conductivity 50 Chapter 5 . Conclusion 52 References 54

    [1]Lan, P.T., Chou, S.Y., Chen, L.L. and Gemmill, D., "Determining fabrication orientations for rapid prototyping with stereolithography apparatus", CAD Computer Aided Design, Vol. 29, No. 1, pp. 53-62 (1997).
    [2]Agarwala, M., Bourell, D., Beaman, J., Marcus, H. and Barlow, J., "Direct selective laser sintering of metals", Rapid prototyping Journal, Vol. 1, No. 1, pp. 26-36 (1995).
    [3]Sachdeva, A., Singh, S. and Sharma, V., "Investigating surface roughness of parts produced by SLS process", International Journal of Advanced Manufacturing Technology, Vol. 64, No. 9-12, pp. 1505-1516 (2013) .
    [4]Thrimurthulu, K., Pandey, P.M. and Reddy, N.V., "Optimum part deposition orientation in fused deposition modeling", International Journal of Machine Tools and Manufacture, Vol. 44, No. 6, pp. 585-594 (2004) .
    [5]Lee, B.H., Abdullah, J., Khan, Z.A., "Optimization of rapid prototyping parameters for production of flexible ABS object", Journal of Materials Processing Technology, Vol. 169, No. 1, pp. 54-61 (2005) .
    [6]Mueller, B. and Kochan D., "Laminated object manufacturing for rapid tooling and patternmaking in foundry industry", Computers in Industry, Vol. 39, No. 1, pp. 47-53. (1999)
    [7]Cui, X., Ouyang, S., Yu, Z., Wang, C. and Huang, Y., "A study on green tapes for LOM with water-based tape casting processing", Materials Letters, Vol. 57, No. 7, pp. 1300-1304 (2003) .
    [8]Zhang, X., Zhou, B., Zeng, Y. and Gu, P., "Model layout optimization for solid ground curing rapid prototyping processes", Robotics and Computer-Integrated Manufacturing, Vol. 18, No. 1, pp. 41-51 (2002) .
    [9]Yan, X. and Gu, P., "A review of rapid prototyping technologies and systems", CAD Computer Aided Design, Vol. 28, No. 4, pp. 307-318 (1996) .
    [10] 吳瑞祥,「組織工程用三維支架之製程路徑規畫」,碩士論文,國立中央大學,機械工程系,民國九十七年。
    [11] Zhou, J.G., Herscovic,i D. and Chen, C.C., "Parametric process optimization to improve the accuracy of rapid prototyped stereolithography parts", International Journal of Machine Tools and Manufacture, Vol. 40, No. 3, pp. 363-379 (2000) .
    [12] Yang, H.J., Hwang, P.J. and Lee, S.H, "A study on shrinkage compensation of the SLS process by using the Taguchi method", International Journal of Machine Tools and Manufacture, Vol. 42, No. 11, pp. 1203-1212 (2002) .
    [13] Martinez, J., Dieguez, J.L., Pereira, A. and Perez, J.A., "Modelization of surface roughness in FDM parts", Proc. of 4th Manufacturing Engineering Society International Conference, Spain (2011).
    [14] Gu, P.H., Zhang, X.K., Zeng, Y. and Ferguson, B., "Quality analysis and optimization of solid ground curing process", Journal of Manufacturing Systems, Vol. 20, No. 4, pp. 250-263(2001).
    [15] Kechagias, J.D., "An experimental investigation of the surface roughness of parts produced by LOM process", Rapid Prototyping Journal, Vol. 13, No. 1, pp.17-22(2007).
    [16]Stampel, J., Fouad, H., Seidler, S., Liska, R., Schwager, F., Woesz, A. and Fratzl, P., "Fabrication and moulding of cellular materials by rapid prototyping," International Journal of Materials and Product Technology, Vol. 21, No. 4, pp. 285-96(2004).
    [17] Limaye, A.S. and Rosen, D.W., "Process planning method for mask projection micro-stereolithography," Rapid Prototyping Journal, Vol. 13, No. 2, pp. 76-84 (2007).
    [18] Chiu, S.H., Pong, S.H., Wu, D.C. and Lin, C.H., "A study of photomask correction method in area-forming rapid prototyping system," Rapid Prototyping Journal, Vol. 14, No. 5, pp. 285-292 (2008).
    [19] Evstatiev, M., Fakirov, S., "Microfibrillar reinforcement of polymer blends, " Polymer Vol. 33, pp. 877-880(1992).
    [20]Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf, M. A. and Jasiuk, I., "Experimental trends in polymer nanocomposites—a review, " Materials Science and Engineering A, Vol. 393, No. 1-2, pp. 1-11 (2005).
    [21]Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T. and Kamigaito and Swelling, O.J.,"Behavior of Montmorillonite Cation Exchanged for V-amino Acids by E-caprolactam, " Vol. 8, No. 5, pp. 1174-1180. (1993).
    [22]Kang, J.T. and Kim, S.H.,"Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification, " Macromolecular Research, Vol. 19, No. 8, pp. 789-796 (2011).
    [23]Mihai, Rusu., Nicoleta, Sofian. and Daniela, Rusu.,"Mechanical and thermal properties of zinc powder filled high density polyethylene composites, " Polymer Testing, Vol. 20, No. 4 pp. 409-417 (2001).
    [24]Suzhu, Yu., Peter, Hing, and Xiao, Hu., "Thermal conductivity of polystyrene- aluminum nitride composite," Elsevier Composite: Part A, Vol. 33, No. 2, pp. 289-292 (2002).
    [25] Weidenfeller, Bernd., Michael, Hofer., Frank, R. and Schilling, "Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene, " Composite: Part A applied science and manufacturing, Vol. 35, No. 4, pp. 423-429 (2004).
    [26]Mamunya, Y.P., Davydenko, V.V., Pissis, P. and Lebedev, E.V., "Electrical and thermal conductivity of polymers filled with metal powders," European Polymer Journal, Vol. 38, No. 9, pp. 1887-1897 (2002) .
    [27]Schmidle, C.J. "Ultraviolet curable flexible coatings," Journal Coated Fabrics, Vol. 8, p. 10-20 (1979) .
    [28] Oraby, W., Walsh, W.K. and Appl, J., "Elastomeric electron beam-cured coatings: Structure-property telationships. I. Oligomer structure," Polymer. Sci., Vol. 23, No. 23, pp. 3227-3242 (1979) .
    [29]Jie, Dai, Xuemin, Gao, Guoji, Jiang. "Studies of structure and properties of photocrosslinked polyurethane," Makromol. Vol. 192, No. 1, pp. 177-184 (1991).
    [30]Mingxian, Liu, Quanliang, Zou, Mingliang, Du, Demin, Jia. "Interaction between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/ halloysite nanocomposites," IOP Publishing Nanotechnology, Vol. 19 pp. 205709-205719(2008).
    [31]蔡家榮,「應用反應曲面法於面成型快速原型系統製程參數最佳化之研究」,碩士論文,國立台灣科技大學,材料科學與工程系,民國一百年。
    [32]Speckhard, T.A., Hwang, K.K., Lin, S., Tsay, S.B., Koshib, S.Y., Ding, Y.S. and Copper, S.L., "Properties of UV-Curable polyurethane acrylate: effect of reactive diluent ," Journal of Applied Polymer Science, Vol.30, pp. 647-666 (1985).
    [33]Xilei, Chen., Yuan, Hu., Lei, Song., Chao, Jiao., "Preparation and thermal properties of a novel UV-cured star polyurethane acrylate coating," Polymer for advanced technologies. Vol. 19 , pp. 322-327 (2008) .
    [34]Jacobs, P. F., "Stereolithography and other RP&M Technologies," ASME Press, New York (1996).
    [35]ASTM D638, "Standard Test Method for Tensile Properties of Plastics, " American Society for Testing and Material (2002).
    [36]ASTM D2240, "Standard Test Method for Rubber Property - Durometer Hardness, " American Society for Testing and Material (2002).
    [37]Bin, Yu., Xin, Wang., Weiyi, Xing., Hongyu, Yang., Lei, Song. and Yuan, Hu., "UV-curable functionalized grapheme Oxide/Polyurethane acrylate nanocomposite coating with enhanced thermal stability and mechanical properties, " I&EC research, Vol. 51, pp. 14629-14636. (2012).
    [38]Rusu, M., Sofian, N., Rusu, D., "Mechanical and thermal properties of zinc powder filled high density polyethylene composites, " Polymer Testing Vol. 20, pp. 409-417 (2001).
    [39]Molefi, J.A., Luyt, A.S. and Krupa, I., "Comparison of the influence of copper micro- and nano-particles on the mechanical properties of polyethylene/copper composites," J Mater Sci. Vol. 45 ,No. 1, pp.82-88 (2010).
    [40]Wierzbicki, T. and Doyoyo, M., "Determination of the local stress-strain response of foams," ASME, Vol 70, No. 2, pp. 204-211(2003).
    [41]Low, I.M., "Effects of load and time on the hardness of a viscoelastic polymer," Material Research Bulletin, Vol.33, No. 12, pp. 1753-1758 (1998).
    [42]Luyt, A. S., Molefi, J. A. and Krump, H., "Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites," Polymer Degradation and Stability, Vol. 91, No. 7, pp. 1629-1636 (2006) .

    QR CODE