簡易檢索 / 詳目顯示

研究生: 吳厚錫
Hou-hsi Wu
論文名稱: 雙團鏈高分子結合氫鍵型側鏈液晶之自組裝階層性結構與其光學性質
Hydrogen Bonding Side Chain Liquid Crystal Diblock Copolymer forming Self-assembled Hierarchical Structure and Optical Property
指導教授: 洪伯達
Po-Da Hong
口試委員: 陳志堅
Jyh-Chien Chen
石淦生
Kan-Shan Shin
莊偉綜
Wei-Tsung Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 49
中文關鍵詞: 自組裝高分子階層性結構光子晶體
外文關鍵詞: Self-assembly Structure, Hierarchical Structure, Photonic Band Gap
相關次數: 點閱:217下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由PS5355-b-P4VP714與4-(3,4,5-tri(dodecyloxy)benzoyloxy)benzoic acid (TDB) 混摻,使得 P4VP 上的 pyridine 與 TDB 之 -COOH 形成氫鍵,產生側鏈型液晶的 PS-b-P4VP(TDB)x 複合物,其中 x 為每個pyridine 單體與 TDB 分子之莫爾比。PS-b-P4VP(TDB)x 可自組裝為階層性結構,其中 PS-b-P4VP 可透過微相分離形成大尺度之有序結構; 而 TDB 和 P4VP 會在小尺度範圍形成液晶相結構。不同含量的 TDB 會改變 PS 與 P4VP(TDB)x 的體積分率,導致階層結構的改變。由實驗結果發現,隨 TDB 含量不同,其小尺度-大尺度階層結構變化為: x = 0.1,向列相-橢球階層結構 (nematic phase-within-ellipsoid); x = 0.2,向列相-條狀階層結構 (nematic phase-within-strip); x = 0.3,層列相-扭曲狀階層結構 (smectic phase-within-distortion); x = 0.5 與 0.7 則為柱狀-層狀階層結構 (column-within-lamellae)。此外,由 UV/Vis 光譜及肉眼可以發現,PS-b-P4VP(TDB)x ≥ 0.5 之層狀結構具有photonic band gap 的特性,在室溫下,PS-b-P4VP(TDB)0.5 反射藍光,而高溫約 160 oC 則反射綠光; PS-b-P4VP(TDB)0.7 在室溫時反射藍綠光,而約 160 oC 反射光轉變為橘紅色。進一步由反射式 UV/Vis 光譜分析得知,室溫下 PS-b-P4VP(TDB)0.7 能帶 (band gap) 約為 450 nm,高溫 120 oC 時則增加至 520 nm,其原因藉由 USAXS (Ultra Small Angle X-ray Scattering) 鑑定,發現隨溫度上升,PS-b-P4VP(TDB)0.7 層狀尺寸增加; 此外,WAXS 實驗中亦發現,隨溫度增加,液晶相由六方柱狀轉為層列相,最終變為 isotropic phase,液晶相隨溫度轉變可由 FT-IR 分析得知,因溫度上升,導致 TDB 與 P4VP 間的氫鍵作用力減弱,而使得 P4VP(TDB)0.7 無法藉由 π-π 堆疊的作用力保持柱狀而轉變為層列相,因 TDB 重新排列導致空間立體障礙,P4VP 鏈段會往大尺度層狀結構的法線方向伸展,且 P4VP 鏈段的中心距離亦由 5.37 nm 縮小為 4.2 nm,導致 PS 鏈段與 P4VP(TDB)0.7 鏈段間的每一連結點面積也隨之減少,為了保持密度均一,PS 亦會朝層狀結構的法線方向延伸,使得層狀結構尺寸增大而導致反射光的紅位移現象。


In this study, hydrogen-bonding amphiphilic nonmesogens of 4-(3,4,5-tri(dodecyloxy) benzoyloxy) benzoic acid (TDB) was complexed to P4VP block of an asymmetric polystyrene-block-poly(4-vinylpyridine) (PS5355-b-P4VP714) to form supramolecular side-chain liquid crystalline blocks containing self-assembled hierarchical morphology with the global microphase separation of diblock copolymer and local segregation of side-chain liquid crystalline. The hierarchical structures with varied TDB content were observed by using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). The novel morphological transitions of hierarchical column-within-lamellae structure have obtained in PS-b-P4VP(TDB)x for x = 0.5 and 0.7, where x is the number of TDB molecules per vinylpyridine repeat unit. We used reflection UV/Vis spectrometer and digital camera to characterize the phenomenon of photonic band gap for PS-b-P4VP(TDB)x (x = 0.5 and 0.7). At room temperature PS-b-P4VP(TDB)0.5 is blue ,and PS-b-P4VP(TDB)0.7 is green. When temperature increase to 160 oC, the color of PS-b-P4VP(TDB)0.5 becomes green, and the other one, PS-b-P4VP(TDB)0.7, changes to red. We also got the same phenomenon, red shift, from temperature-dependence UV/Vis spectrometer. Then, we used temperature-dependence SAXS, WAXS, FT-IR and UV/Vis to characterize PS-b-P4VP(TDB)0.7 for the reason of red shift. The reason is that when temperature increase, the chain of PS-b-P4VP(TDB)0.7 extend to the normal direction of lamellae.

論文提要內容 I Abstract III 誌 謝 IV 目錄 V 圖表目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 光子晶體概論 2 1.3 自組裝高分子 4 1.4 自組裝高分子之光子晶體 8 1.5 研究動機 12 第二章 實驗 14 2.1 材料 14 2.2 樣品製備 16 2.3 實驗項目 17 2.3-1 儀器分析 17 2.3-2 國際照明委員會色度座標圖 (CIE color coordination) 19 第三章 結果與討論 21 3.1 階層性自組裝結構分析 21 3.2 光學性質分析 27 第四章 結論 35 參考文獻 37

1. H. Hasegawa; T. Hashimoto; H. Kawait; T. P. Lodge; E. J. Amis; C. J. Glinka; C. C. Han Macromolecules 18, 67 (1985).
2. H. Tanaka; H. Hasegawa; T. Hashimoto Macromolecules 24, 240 (1991).
3. K. I. Winey; E. L. Thomas; L. J. Fetters Macromolecules 24, 6182 (1991).
4. A. Ciferi; Supramolecular polymer; Taylor & Francis: Boca Raton (2005).
5. J. Ruokolainen; R. Mäkinen; M. Torkkei; T. Mäkelä; R. Serimaa; G. ten Brinke; O. Ikkala Science 280, 557 (1998).
6. O. Ikkala; G. ten Brinke Science 295, 2407 (2002).
7. S. Valkama; H. Kosonen; J. Ruokolainen; T. Haatainen; M. Torkkeli; R. Serimaa; G. ten Brinke; O. Ikkala Nature Materials 3, 872 (2004).
8. C. Osuji; C. Y. Chao; I. Bita; C. K. Ober; E. L. Thomas Adv. Funct. Mater. 12, 753 (2002).
9. S. Valkama; T. Ruotsalainen; A. Nykänen; A. Laiho; H. Kosonen; G. ten Brinke; O. Ikkala; J. Ruokolainen Macromolecules 39, 9327 (2006).
10. H. L. Chen; J. S. Lu; C. H. Yu; C. L. Yeh; U. S. Jeng,; W. C. Chen Macromolecules 40, 3271 (2007).
11. K. K. Tenneti; X. Chen; C. Y. Li; X. Wan; X. Fan; Q. F. Zhou; L. Rong; B. S. Hsiao Macromolecules 40, 5095 (2007).
12. R. Ramani; S. Hanski; A. Laiho; R. Tuma; S. Kilpeläinen; F. Tuomisto; J. Ruokolainen; O. Ikkala Biomacromolecules 9, 1390 (2008).
13. S. Hanski; S. Junnila; L. Almásy; J. Ruokolainen; O. Ikkala Macromolecules, 41, 866 (2008).
14. W. van Zoelen; T. Asumaa; J. Ruokolainen; O. Ikkala; G. ten Brinke Macromolecules 41, 3199 (2008).
15. W. S. Chiang; C. H. Lin; C. L. Yeh; B. Nandan; P. N. Hsu; C. W. Lin; H. L. Chen; W. C. Chen Macromolecules 42, 2304 (2009).
16. W. T. Chuang; H. S. Sheu; U. S. Jeng; H. H. Wu; P. D. Hong; J. J. Lee Chem. Mater. 21, 975 (2009).
17. E. Helfand; Z. R. Wasserman Macromolecules 11, 960 (1978).
18. E. Helfand; Z. R. Wasserman Macromolecules 13, 994 (1980).
19. E. Helfand; Z. R. Wasserman Macromolecules 9, 879 (1976).
20. K. K. Tenneti; X. Chen; C. Y. Li; Z. Shen; X. Wan; X. Fan; Q. F. Zhou; L. Rong; B. S. Hsiao Macromolecules 42, 3510 (2009).
21. E. Yablonovitch Phys. Rev. Lett. 58, 2059 (1987).
22. S. John Phys. Rev. Lett. 58, 2486 (1987).
23. J. G. Fleming; S. Y. Lin Opt. Lett. 24, 49 (1999).
24. M. Campbell; D. N. Sharp; M. T. Harrison; R. G. Denning; A. J. Turberfield Nature 404, 53 (2000).
25. Y. Fink; J. N. Winn; S. H. Fan; C. P. Chen; J. Michel; J. D. Joannopoulos; E. L. Thomas Science 282, 1679 (1998).
26. K. Lee; S. A. Asher J. Am. Chem. Soc. 122, 9534 (2000).
27. Y. A. Vlasov; M. Deutsch; D. J. Norris Appl. Phys. Lett. 76, 1627 (2000).
28. A. Urbas; Y. Fink; E. L. Thomas Macromolecules 32, 4748 (1999).
29. Y. Fink; A. M. Urbas; M. G. Bawendi; J. D. Joannopoulos; E. L. Thomas J. Lightwave Technol. 17, 1963 (1999).
30. A. Urbas; R. Sharp; Y. Fink; E. L. Thomas; M. Xenidou; L. J. Fetters Adv. Mater. 12, 812 (2000).
31. A. M. Urbas; M. Malvodan; P. DeRege; E. L. Thomas Adv. Mater. 14, 1850 (2002).
32. J. Yoon; R. T. Mathers; G. W. Coates; E. L. Thomas Macromolecules 39, 1913 (2006).
33. Y. Kang; J. J. Walish; T. Gorishnyy; E. L. Thomas Nature Materials 6, 957 (2007).
34. J. Yoon; W. Lee; E. L. Thomas Macromolecules 41, 4582 (2008).
35. P. D. Hustad; G. R. Marchand; E. I. Garcia-Meitin; P. L. Roberts; J. D. Weinhold Macromolecules 42, 3788 (2009).
36. M. Maldovan; E. L. Thomas; Periodic Materials and Interference Lithography; Wiley-VCH, Weinheim 141-146 (2008).
37. D. E. Fogg; L. H. Radzilowski; B. O. Dabbousi; R. R. Schrock; E. L. Thomas; M. G. Bawendi Macromolecules 30, 8433 (1997).
38. M. W. Matsen; F. S. Bates Macromolecules 29, 1091 (1996).
39. M. W. Matsen; F.S. Bates Macromolecules 29, 7641 (1996).
40. C. Park; J. Yoon; E. L. Thomas Polymer 44, 6725 (2003).
41. V. Percec; M. Glodde; T. K. Bera; Y. Miura; I. Shiyanovskaya; K. D. Singer; V. S. K. Balagurusamy; P. A. Heniney; I. Schenll; A. Rapp; H. W. Spiess; S. D. Huason; H. Duan Nature 419, 384 (2002).
42. J. Ruokolainen; G. ten Brinke; O. Ikkala Adv. Mater. 11, 777 (1999).
43. U. Beginn Prog. Polym. Sci. 28, 1049 (2003).
44. T. Kato; N. Mizoshita; K. Kishimoto Angew. Chem. Int. Ed. 45, 38 (2006).
45. X. Zhu; U. Beginn; M. Möller; R. I. Gearba; D. V. Anokhin; D. I. Ivanov J. Am. Chem. Soc. 128, 16928 (2006).
46. Y. K. Kwon; S. Chvalun; A. I. Scheider; S. Blackwell; V. Percec; J. A. Heck Macromolecules 27, 6129 (1994). 
47. S. A. Prokhorova; S. S. Sheiko; M. Möller; C. H. Ahn; V. Percec Macromol. Rapid Commun. 19, 359 (1998).
48. Q. M. Wang; D. W. Bruce Angew. Chem., Int. Ed. Engl. 36, 150 (2003).
49. J. Ropponen; S. Nummelin; K. Rissanen Org. Lett. 6, 2495 (2004).
50. C. K. Lai; A. G. Serrette; T. M. Swager J. Am. Chem. Soc. 114, 7948 (1992).
51. G. Blasse; B.C. Crabmaier; Luminescent Materials; Spring-Verlag, Germany (1994).
52. http://www.ledtronics.com
53. H. Kihara; T. Kato; T. Uryu; J. M. J. Fréchet Chem. Mater. 8, 961 (1996).
54. B. Chu; B. S. Hsiao Chem. Rev. 101, 1727 (2001).
55. S. Diele; S. Oelsner; F. Kuschel; B. Hisgen; H. Ringsdorf Mol. Cryst. Liq. Cryst. 155 (Pt. B), 399 (1988).
56. F. S. Bates; G. H. Fredrickson Annu. ReV. Phys. Chem. 41, 525 (1990).
57. I. W. Hamley; The Physics of Block Copolymers; Oxford, U.K., New York (1998).

QR CODE