簡易檢索 / 詳目顯示

研究生: 徐郁晴
Yu-Ching Hsu
論文名稱: 運用硫醇-烯交聯製備本質彈性且自修復之發光鈣鈦礦-聚合物複合材料
Fabrication of Intrinsic Elastic Self-healing and Luminescent Perovskite-Polymer Composite via Thiol-ene Crosslinking
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 陳良益
Liang-Yih Chen
蔡孟霖
Meng-Lin Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 95
中文關鍵詞: 聚異戊二烯鈣鈦礦硫化可拉伸自修復
外文關鍵詞: polyisoprene, perovskites, vulcanization, stretchable, self-healing
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 I Abstract II Chapter 1 Introduction 1 Chapter 2 Basic Theory and Literature Review 6 2.1 Development of Stretchable Transparent Optoelectronic Materials 6 2.1.1 Structural Alterations 6 2.1.2 Postpolymerization Modification 7 2.1.2.1 Physical Blending of Elastomers 7 2.1.2.2 Small Additives 8 2.1.2.3 Chemical Crosslinking 9 2.2 Perovskite 12 2.2.1 Metal Halide Perovskite Light Emitters 12 2.2.2 Versatile Defect Passivation Methods for Metal Halide Perovskite Materials 16 2.3 Self-Healing Behavior 21 2.3.1 Using Hydrogen Bonding For Self-Healing 21 2.3.2 Combine Self-Healing Materials And Luminescent Materials 23 2.4 Vulcanization 25 2.4.1 Thermal Cross-Linking Through Thiol-Ene Click Reaction 25 Chapter 3 Experimental Section 28 3.1 Experimental Materials 28 3.2 Instrument 28 3.3 Experimental Method 29 3.3.1 Synthesis Flow Chart of PI-co-BACO-Perovskites 29 3.3.2 Synthesis polyisoprene-co-poly(2-[[(Butylamino)carbonyl]oxy]ethyl acrylate) (PI-co-PBACO) Copolymers 29 3.3.3 Preparation of PI-co-PBACO-Perovskites Free-Standing Films 30 3.3.4 Preparation of PI-co-PBACO-Perovskites Thin Film 31 3.4 Analyze Experimental Methods 32 3.4.1 Structural Identification 32 3.4.2 Material Analysis 32 3.4.3 Self-Healing Property Morphological Analysis 33 Chapter 4 Results and Discussion 34 4.1 Structural Identification of Oleylamine and Oleylacid Reacted with AIBN 34 4.2 Synthesis and Identification of PI-co-BACO 38 4.3 Material Mechanical Property and Rheology Analysis 42 4.4 Material Thermal Properties Analysis and Rheological Properties 49 4.5 Mechanical Prperties Analysis of Materials That Self-Healed 54 4.6 Analysis of Self-Healing Surface Morphology of Material Thin Film State 59 Chapter 5 Conclusion 64 Chapter 6 Future Work 66 Reference 67

1. Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8 (6), 494-499.
2. Lee, P.; Ham, J.; Lee, J.; Hong, S.; Han, S.; Suh, Y. D.; Lee, S. E.; Yeo, J.; Lee, S. S.; Lee, D., Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv. Funct. Mater. 2014, 24 (36), 5671-5678.
3. Park, Y. J.; Lee, S.-K.; Kim, M.-S.; Kim, H.; Ahn, J.-H., Graphene-based conformal devices. ACS nano 2014, 8 (8), 7655-7662.
4. Au-Duong, A.-N.; Wu, C.-C.; Li, Y.-T.; Huang, Y.-S.; Cai, H.-Y.; Jo Hai, I.; Cheng, Y.-H.; Hu, C.-C.; Lai, J.-Y.; Kuo, C.-C.; Chiu, Y.-C., Synthetic Concept of Intrinsically Elastic Luminescent Polyfluorene-Based Copolymers via RAFT Polymerization. Macromolecules 2020, 53 (10), 4030-4037.
5. Lipomi, D. J.; Bao, Z., Stretchable and ultraflexible organic electronics. MRS Bulletin 2017, 42 (02), 93-97.
6. Guo, M.; Huang, Y.; Cao, J.; Xu, Y.; Lu, S.; Feng, S., Luminescent and Robust Perovskite-Silicone Elastomers Prepared by Light Induced Thiol-Ene Reaction. Macromol. Rapid Commun. 2021, 42 (5), e2000606.
7. Kim, J.-H.; Park, J.-W., Intrinsically stretchable organic light-emitting diodes. Sci. Adv. 2021, 7 (9), eabd9715.
8. Zuo, Y.; Lu, H.; Xue, L.; Wang, X.; Wu, L.; Feng, S., Polysiloxane‐Based Luminescent Elastomers Prepared by Thiol–ene “Click” Chemistry. Chem. Eur. J. 2014, 20 (40), 12924-12932.
9. Müller, C.; Goffri, S.; Breiby, D. W.; Andreasen, J. W.; Chanzy, H. D.; Janssen, R. A.; Nielsen, M. M.; Radano, C. P.; Sirringhaus, H.; Smith, P., Tough, semiconducting polyethylene‐poly (3‐hexylthiophene) diblock copolymers. Adv. Funct. Mater. 2007, 17 (15), 2674-2679.
10. Son, S. Y.; Kim, J.-H.; Song, E.; Choi, K.; Lee, J.; Cho, K.; Kim, T.-S.; Park, T., Exploiting π–π stacking for stretchable semiconducting polymers. Macromolecules 2018, 51 (7), 2572-2579.
11. Wen, H.-F.; Wu, H.-C.; Aimi, J.; Hung, C.-C.; Chiang, Y.-C.; Kuo, C.-C.; Chen, W.-C., Soft poly (butyl acrylate) side chains toward intrinsically stretchable polymeric semiconductors for field-effect transistor applications. Macromolecules 2017, 50 (13), 4982-4992.
12. Kim, Y. H.; Cho, H.; Lee, T. W., Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (42), 11694-11702.
13. Li, Y. F.; Chou, S. Y.; Huang, P.; Xiao, C.; Liu, X.; Xie, Y.; Zhao, F.; Huang, Y.; Feng, J.; Zhong, H.; Sun, H. B.; Pei, Q., Stretchable Organometal-Halide-Perovskite Quantum-Dot Light-Emitting Diodes. Adv. Mater. 2019, 31 (22), e1807516.
14. Abir, S. S. H.; Gupta, S. K.; Ibrahim, A.; Srivastava, B. B.; Lozano, K., Tunable CsPb(Br/Cl)3 perovskite nanocrystals and further advancement in designing light emitting fiber membranes. Materials Advances 2021, 2 (8), 2700-2710.
15. Wagner, S.; Lacour, S. P.; Jones, J.; Pai-hui, I. H.; Sturm, J. C.; Li, T.; Suo, Z., Electronic skin: architecture and components. Physica E Low Dimens. Syst. Nanostruct. 2004, 25 (2-3), 326-334.
16. Tang, J.; Li, J.; Vlassak, J. J.; Suo, Z., Adhesion between highly stretchable materials. Soft Matter 2016, 12 (4), 1093-1099.
17. Gao, H.; Chen, S.; Liang, J.; Pei, Q., Elastomeric Light Emitting Polymer Enhanced by Interpenetrating Networks. ACS Appl. Mater. Interfaces 2016, 8 (47), 32504-32511.
18. Kato, H.; Nakatsubo, F.; Abe, K.; Yano, H., Crosslinking via sulfur vulcanization of natural rubber and cellulose nanofibers incorporating unsaturated fatty acids. RSC Adv. 2015, 5 (38), 29814-29819.
19. Shi, X.; Zhou, X.; Zhang, Y.; Xu, X.; Zhang, Z.; Liu, P.; Zuo, Y.; Peng, H., A self-healing and stretchable light-emitting device. J. Mater. Chem. C 2018, 6 (47), 12774-12780.
20. Jitchum, V., Perrier, S., Living radical polymerization of isoprene via the RAFT process. Macromolecules 2007, 40 (5), 1408-1412.
21. Lee, S.; Chang, T., Synthesis and characterization of polystyrene-b-polyisoprene-b-poly(methylmethacrylate) triblock copolymer. Eur. Polym. J. 2011, 47 (4), 800-804.
22. Marsitzky, D.; Klapper, M.; Müllen, K., End-Functionalization of Poly (2, 7-fluorene): A Key Step toward Novel Luminescent Rod− Coil Block Copolymers. Macromolecules 1999, 32 (25), 8685-8688.
23. Lin, C.-H.; Tung, Y.-C.; Ruokolainen, J.; Mezzenga, R.; Chen, W.-C., Poly [2, 7-(9, 9-dihexylfluorene)]-block-poly (2-vinylpyridine) rod− coil and coil− rod− coil block copolymers: synthesis, morphology and photophysical properties in methanol/THF mixed solvents. Macromolecules 2008, 41 (22), 8759-8769.
24. Tian, Y.; Chen, C.-Y.; Yip, H.-L.; Wu, W.-C.; Chen, W.-C.; Jen, A. K.-Y., Synthesis, nanostructure, functionality, and application of polyfluorene-block-poly (N-isopropylacrylamide) s. Macromolecules 2010, 43 (1), 282-291.
25. Root, S. E.; Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J., Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 2017, 117 (9), 6467-6499.
26. Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S., Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3) 2PbI4. Appl. Phys. Lett. 1994, 65 (6), 676-678.
27. Hong, X.; Ishihara, T.; Nurmikko, A., Photoconductivity and electroluminescence in lead iodide based natural quantum well structures. SSCom 1992, 84 (6), 657-661.
28. Hattori, T.; Taira, T.; Era, M.; Tsutsui, T.; Saito, S., Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. CPL 1996, 254 (1-2), 103-108.
29. Ishihara, T.; Hong, X.; Ding, J.; Nurmikko, A., Dielectric confinement effect for exciton and biexciton states in PbI4-based two-dimensional semiconductor structures. Surf. Sci. 1992, 267 (1-3), 323-326.
30. Hong, X.; Ishihara, T.; Nurmikko, A., Dielectric confinement effect on excitons in PbI 4-based layered semiconductors. Phys. Rev. B 1992, 45 (12), 6961.
31. Ishihara, T.; Takahashi, J.; Goto, T., Exciton state in two-dimensional perovskite semiconductor (C10H21NH3) 2PbI4. SSCom 1989, 69 (9), 933-936.
32. Tang, C. W.; VanSlyke, S. A.; Chen, C. H., Electroluminescence of doped organic thin films. Int. J. Appl. Phys. 1989, 65 (9), 3610-3616.
33. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. JAP 2001, 90 (10), 5048-5051.
34. Chang, Y.-L.; Wang, Z.; Helander, M.; Qiu, J.; Puzzo, D.; Lu, Z., Enhancing the efficiency of simplified red phosphorescent organic light emitting diodes by exciton harvesting. Org. Electron. 2012, 13 (5), 925-931.
35. Kim, D. H.; Cho, N. S.; Oh, H. Y.; Yang, J. H.; Jeon, W. S.; Park, J. S.; Suh, M. C.; Kwon, J. H., Highly efficient red phosphorescent dopants in organic light‐emitting devices. Adv. Mater. 2011, 23 (24), 2721-2726.
36. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395 (6698), 151-154.
37. O’brien, D.; Baldo, M.; Thompson, M.; Forrest, S., Improved energy transfer in electrophosphorescent devices. Appl. Phys. Lett. 1999, 74 (3), 442-444.
38. Meerheim, R.; Scholz, S.; Olthof, S.; Schwartz, G.; Reineke, S.; Walzer, K.; Leo, K., Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. Int. J. Appl. Phys. 2008, 104 (1), 014510.
39. Lee, T. W.; Chung, Y.; Kwon, O.; Park, J. J., Self‐organized gradient hole injection to improve the performance of polymer electroluminescent devices. Adv. Funct. Mater. 2007, 17 (3), 390-396.
40. Han, T. H.; Choi, M. R.; Woo, S. H.; Min, S. Y.; Lee, C. L.; Lee, T. W., Molecularly Controlled Interfacial Layer Strategy Toward Highly Efficient Simple‐Structured Organic Light‐Emitting Diodes. Adv. Mater. 2012, 24 (11), 1487-1493.
41. Kim, Y. H.; Wolf, C.; Cho, H.; Jeong, S. H.; Lee, T. W., Highly Efficient, Simplified, Solution‐Processed Thermally Activated Delayed‐Fluorescence Organic Light‐Emitting Diodes. Adv. Mater. 2016, 28 (4), 734-741.
42. Kabra, D.; Lu, L. P.; Song, M. H.; Snaith, H. J.; Friend, R. H., Efficient Single‐Layer Polymer Light‐Emitting Diodes. Adv. Mater. 2010, 22 (29), 3194-3198.
43. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492 (7428), 234-238.
44. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P., Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370 (6488), 354-357.
45. Mattoussi, H.; Radzilowski, L. H.; Dabbousi, B. O.; Thomas, E. L.; Bawendi, M. G.; Rubner, M. F., Electroluminescence from heterostructures of poly (phenylene vinylene) and inorganic CdSe nanocrystals. JAP 1998, 83 (12), 7965-7974.
46. Schlamp, M.; Peng, X.; Alivisatos, A.-l., Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer. JAP 1997, 82 (11), 5837-5842.
47. Coe, S.; Woo, W.-K.; Bawendi, M.; Bulović, V., Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420 (6917), 800-803.
48. Coe‐Sullivan, S.; Steckel, J. S.; Woo, W. K.; Bawendi, M. G.; Bulović, V., Large‐Area Ordered Quantum‐Dot Monolayers via Phase Separation During Spin‐Casting. Adv. Funct. Mater. 2005, 15 (7), 1117-1124.
49. Cho, K.-S.; Lee, E. K.; Joo, W.-J.; Jang, E.; Kim, T.-H.; Lee, S. J.; Kwon, S.-J.; Han, J. Y.; Kim, B.-K.; Choi, B. L., High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3 (6), 341-345.
50. Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K., Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 2012, 12 (5), 2362-2366.
51. Qian, L.; Zheng, Y.; Xue, J.; Holloway, P. H., Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5 (9), 543-548.
52. Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S., High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7 (5), 407-412.
53. Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515 (7525), 96-99.
54. Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9 (9), 687-92.
55. Kim, Y. H.; Cho, H.; Heo, J. H.; Kim, T. S.; Myoung, N.; Lee, C. L.; Im, S. H.; Lee, T. W., Multicolored organic/inorganic hybrid perovskite light‐emitting diodes. Adv. Mater. 2015, 27 (7), 1248-1254.
56. Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350 (6265), 1222-1225.
57. Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M., Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 2016, 7 (1), 1-9.
58. Wetzelaer, G. J. A.; Scheepers, M.; Sempere, A. M.; Momblona, C.; Ávila, J.; Bolink, H. J., Trap‐assisted non‐radiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 2015, 27 (11), 1837-1841.
59. D’innocenzo, V.; Grancini, G.; Alcocer, M. J.; Kandada, A. R. S.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A., Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5 (1), 1-6.
60. Stranks, S. D.; Burlakov, V. M.; Leijtens, T.; Ball, J. M.; Goriely, A.; Snaith, H. J., Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2014, 2 (3), 034007.
61. Hu, M.; Bi, C.; Yuan, Y.; Xiao, Z.; Dong, Q.; Shao, Y.; Huang, J., Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in the same system. small 2015, 11 (18), 2164-2169.
62. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15 (6), 3692-3696.
63. Lee, S.; Park, J. H.; Lee, B. R.; Jung, E. D.; Yu, J. C.; Di Nuzzo, D.; Friend, R. H.; Song, M. H., Amine-based passivating materials for enhanced optical properties and performance of organic–inorganic perovskites in light-emitting diodes. J. Phys. Chem. Lett. 2017, 8 (8), 1784-1792.
64. Lee, S.; Park, J. H.; Nam, Y. S.; Lee, B. R.; Zhao, B.; Di Nuzzo, D.; Jung, E. D.; Jeon, H.; Kim, J.-Y.; Jeong, H. Y., Growth of nanosized single crystals for efficient perovskite light-emitting diodes. ACS Nano 2018, 12 (4), 3417-3423.
65. Chen, Z.; Zhang, C.; Jiang, X. F.; Liu, M.; Xia, R.; Shi, T.; Chen, D.; Xue, Q.; Zhao, Y. J.; Su, S., High‐performance color‐tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv. Mater. 2017, 29 (8), 1603157.
66. Zou, Y.; Ban, M.; Yang, Y.; Bai, S.; Wu, C.; Han, Y.; Wu, T.; Tan, Y.; Huang, Q.; Gao, X., Boosting perovskite light-emitting diode performance via tailoring interfacial contact. ACS Appl. Mater. Interfaces 2018, 10 (28), 24320-24326.
67. Song, L.; Guo, X.; Hu, Y.; Lv, Y.; Lin, J.; Liu, Z.; Fan, Y.; Liu, X., Efficient inorganic perovskite light-emitting diodes with polyethylene glycol passivated ultrathin CsPbBr3 films. J. Phys. Chem. Lett. 2017, 8 (17), 4148-4154.
68. Wu, C.; Zou, Y.; Wu, T.; Ban, M.; Pecunia, V.; Han, Y.; Liu, Q.; Song, T.; Duhm, S.; Sun, B., Improved performance and stability of all‐inorganic perovskite light‐emitting diodes by antisolvent vapor treatment. Adv. Funct. Mater. 2017, 27 (28), 1700338.
69. Jeong, B.; Han, H.; Choi, Y. J.; Cho, S. H.; Kim, E. H.; Lee, S. W.; Kim, J. S.; Park, C.; Kim, D.; Park, C., All‐Inorganic CsPbI3 Perovskite Phase‐Stabilized by Poly (ethylene oxide) for Red‐Light‐Emitting Diodes. Adv. Funct. Mater. 2018, 28 (16), 1706401.
70. Zhang, T.; Xie, L.; Chen, L.; Guo, N.; Li, G.; Tian, Z.; Mao, B.; Zhao, Y., In situ fabrication of highly luminescent bifunctional amino acid crosslinked 2D/3D NH3C4H9COO (CH3NH3PbBr3) n perovskite films. Adv. Funct. Mater. 2017, 27 (1), 1603568.
71. Wang, N.; Cheng, L.; Si, J.; Liang, X.; Jin, Y.; Wang, J.; Huang, W., Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers. Appl. Phys. Lett. 2016, 108 (14), 141102.
72. Yang, X.; Zhang, X.; Deng, J.; Chu, Z.; Jiang, Q.; Meng, J.; Wang, P.; Zhang, L.; Yin, Z.; You, J., Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9 (1), 1-8.
73. DeQuilettes, D. W.; Koch, S.; Burke, S.; Paranji, R. K.; Shropshire, A. J.; Ziffer, M. E.; Ginger, D. S., Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 2016, 1 (2), 438-444.
74. La-Placa, M.-G.; Longo, G.; Babaei, A.; Martínez-Sarti, L.; Sessolo, M.; Bolink, H. J., Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control. Chem. Commun. 2017, 53 (62), 8707-8710.
75. Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11 (10), 872-877.
76. Xiao, Z.; Kerner, R. A.; Zhao, L.; Tran, N. L.; Lee, K. M.; Koh, T.-W.; Scholes, G. D.; Rand, B. P., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11 (2), 108-115.
77. Jamaludin, N. F.; Yantara, N.; Ng, Y. F.; Li, M.; Goh, T. W.; Thirumal, K.; Sum, T. C.; Mathews, N.; Soci, C.; Mhaisalkar, S., Grain size modulation and interfacial engineering of CH3NH3PbBr3 emitter films through incorporation of tetraethylammonium bromide. ChemPhysChem 2018, 19 (9), 1075-1080.
78. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F., A thermally re-mendable cross-linked polymeric material. Science 2002, 295 (5560), 1698-1702.
79. Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, I. W.; Rowan, S. J., A healable supramolecular polymer blend based on aromatic π− π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 2010, 132 (34), 12051-12058.
80. Klukovich, H. M.; Kean, Z. S.; Iacono, S. T.; Craig, S. L., Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J. Am. Chem. Soc. 2011, 133 (44), 17882-17888.
81. Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C., Optically healable supramolecular polymers. Nature 2011, 472 (7343), 334-337.
82. Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K., Repeatable photoinduced self‐healing of covalently cross‐linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed. 2011, 123 (7), 1698-1701.
83. Ghosh, B.; Urban, M. W., Self-repairing oxetane-substituted chitosan polyurethane networks. Science 2009, 323 (5920), 1458-1460.
84. Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R., Self-healing materials with microvascular networks. Nat. Mater. 2007, 6 (8), 581-585.
85. White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S.; Brown, E. N.; Viswanathan, S., Autonomic healing of polymer composites. Nature 2001, 409 (6822), 794-797.
86. Wang, Q.; Mynar, J. L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T., High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 2010, 463 (7279), 339-343.
87. South, A. B.; Lyon, L. A., Autonomic self‐healing of hydrogel thin films. Angew. Chem. Int. Ed. 2010, 49 (4), 767-771.
88. Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H., Self‐healing of chemical gels cross‐linked by diarylbibenzofuranone‐based trigger‐free dynamic covalent bonds at room temperature. Angew. Chem. 2012, 124 (5), 1164-1168.
89. Montarnal, D., Tournilhac, F., Hidalgo, M., Couturier, J. L., & Leibler, L., Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J. Am. Chem. Soc. 2009, 131 (23), 7966-7967.
90. Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L., Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451 (7181), 977-80.
91. Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z., Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4 (6), 467-72.
92. Kohjiya, S.; Ikeda, Y., Chemistry, manufacture and applications of natural rubber. Elsevier: 2014; Vol. Amsterdam.
93. Rosilo, H.; Kontturi, E.; Seitsonen, J.; Kolehmainen, E.; Ikkala, O., Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry. Biomacromolecules 2013, 14 (5), 1547-54.
94. Pan, J.; Quan, L. N.; Zhao, Y.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M.; Sinatra, L.; Alyami, N. M.; Liu, J.; Yassitepe, E.; Yang, Z.; Voznyy, O.; Comin, R.; Hedhili, M. N.; Mohammed, O. F.; Lu, Z. H.; Kim, D. H.; Sargent, E. H.; Bakr, O. M., Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering. Adv. Mater. 2016, 28 (39), 8718-8725.
95. Liu, J.; Wang, S.; Tang, Z.; Huang, J.; Guo, B.; Huang, G., Bioinspired Engineering of Two Different Types of Sacrificial Bonds into Chemically Cross-Linked cis-1,4-Polyisoprene toward a High-Performance Elastomer. Macromolecules 2016, 49 (22), 8593-8604.
96. Liu, W.; Dong, X.; Zou, F.; Yang, J.; Wang, D.; Han, C. C., Rheological properties of polybutadiene/polyisoprene blend in the unstable and metastable regions under oscillatory shear. Polymer 2014, 55 (11), 2744-2750.
97. Osswald, T.; Rudolph, N., Polymer rheology. Carl Hanser, München 2015.
98. Lee, S.; Kim, D. B.; Yu, J. C.; Jang, C. H.; Park, J. H.; Lee, B. R.; Song, M. H., Versatile Defect Passivation Methods for Metal Halide Perovskite Materials and their Application to Light-Emitting Devices. Adv. Mater. 2019, 31 (20), e1805244.
99. Burfield, D. R., Polymer glass transition temperatures. J. Chem. Educ. 1987, 64 (10), 875.
100. Lewis, C. L.; Stewart, K.; Anthamatten, M., The Influence of Hydrogen Bonding Side-Groups on Viscoelastic Behavior of Linear and Network Polymers. Macromolecules 2014, 47 (2), 729-740.
101. McGonigle, E.-A.; Cowie, J. M. G.; Arrighi, V.; Pethrick, R. A., Enthalpy relaxation and free volume changes in aged styrene copolymers containing a hydrogen bonding co-monomer. J. Mater. Sci. 2005, 40 (8), 1869-1881.
102. Qiao, B.; Zhao, X.; Yue, D.; Zhang, L.; Wu, S., A combined experiment and molecular dynamics simulation study of hydrogen bonds and free volume in nitrile-butadiene rubber/hindered phenol damping mixtures. J. Mater. Chem. 2012, 22 (24), 12339-12348.
103. Cowie, J.; McEwan, I.; McEwen, I.; Pethrick, R., Investigation of Hydrogen-Bonding Structure in Blends of Poly (N-vinylpyrrolidone) with Poly (vinyl acetate-co-vinyl alcohol) Using Positron Annihilation. Macromolecules 2001, 34 (20), 7071-7075.
104. Kuo, S.-W.; Tsai, H.-T., Complementary multiple hydrogen-bonding interactions increase the glass transition temperatures to PMMA copolymer mixtures. Macromolecules 2009, 42 (13), 4701-4711.
105. Miwa, Y.; Kurachi, J.; Kohbara, Y.; Kutsumizu, S., Dynamic ionic crosslinks enable high strength and ultrastretchability in a single elastomer. Commun. Chem. 2018, 1 (1), 1-8.
106. Zhang, S.; Cheng, Y. H.; Galuska, L.; Roy, A.; Lorenz, M.; Chen, B.; Luo, S.; Li, Y. T.; Hung, C. C.; Qian, Z.; St. Onge, P. B. J.; Mason, G. T.; Cowen, L.; Zhou, D.; Nazarenko, S. I.; Storey, R. F.; Schroeder, B. C.; Rondeau‐Gagné, S.; Chiu, Y. C.; Gu, X., Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites. Adv. Funct. Mater. 2020, 30 (27), 2000663.

無法下載圖示 全文公開日期 2031/08/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE