簡易檢索 / 詳目顯示

研究生: 詹俊德
JYUN-DE JHAN
論文名稱: 透過臨場拉曼光譜深入瞭解甘油電催化過程中Ni2O3和NiO之表面狀態
Insight into surface state of Ni2O3 and NiO during glycerol electro-oxidation by In-situ Raman spectroscopy
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 胡哲嘉
Che-chia Hu
張家耀
Jia-Yaw Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 105
中文關鍵詞: 三氧化二鎳氧化鎳甘油電催化臨場拉曼分析
外文關鍵詞: Ni2O3, NiO, glycerol electro-catalysis, In-situ Raman
相關次數: 點閱:289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氧化鎳經過施加外電壓後所形成之 NiOOH 長久以來被視為電催化之活性位點,於此篇研究中我們證明有著大量 Ni3+之 Ni2O3-x 是一個具有潛力之電催化觸媒,將其應用於甘油電催化時,其對 DHA(二羥丙酮) 有著 60%之選擇率,另一方面,經過高溫燒結部分轉化成 NiO(氧化鎳) 之 NiO/Ni2O3 觸媒對 DHA 只有 40%的選擇率;透過結合電化學以及拉曼光譜儀之 In-situ Raman(臨場拉曼分析) 了解到兩種觸媒於甘油環境中皆會以 NiOOH 之狀態來進行電催化,其中 Ni2O3-x 於更小的施加電位便能產生 NiOOH,且達到飽和 NiOOH(特徵峰強度不隨時間改變) 之時間也較 NiO/Ni2O3 來的快速,證明擁有更高之活性。我們另外研究結構與甘油類似但只擁有二級醇之 1,3-propanediol(1,3-丙二醇),透過 In-situ Raman 分析觸媒於只存在二級醇電解液之表面狀態可以了解到於施加電位為 1.65 V vs. RHE 時,1,3-propanediol 會還原 Ni2O3-x所產生之 Ni3+至 Ni2+來氧化自己,另一方面 NiO 之 Ni3+則不隨電解液存在 1,3-propanediol 而有改變,代表 Ni2O3-x對二級醇擁有更高之反應性因而產生更高選擇率之二羥丙酮


NiOOH formed by nickel oxide after applying an external potential has long been regarded as the active site for electro-catalysis. In this study, we proved that Ni2O3-x with a large amount of Ni3+ is an electro-catalyst with great potential, when it is applied to glycerol electro-catalysis, Ni2O3-x has 60% selectivity toward DHA (dihydroxyacetone), on the other hand “NiO/Ni2O3” which is fabricated by annealing Ni2O3-x in high temperature to form NiO on the surface only has 40% selectivity toward DHA. In-situ Raman analysis reveals that both catalysts will perform electro-catalysis in the state of NiOOH. When glycerol is existed in the electrolyte, Ni2O3-x can generate NiOOH at a lower applied potential and reach saturation (The intensity of NiOOH does not change with time) faster than NiO/Ni2O3, which suggest its higher activity.
We also studied two glycerol-like molecules, 1,3-propanediol and 2-propanol, which are similar to glycerol but only have secondary or primary alcohols. Both catalysts were analyzed by Insitu Raman, when the studied species exist in the electrolyte with the applied potential of 1.65 V vs. RHE, NiOOH formed by Ni2O3-x will be facilely reduced to Ni2+ to oxidize 2-propanol but NiOOH formed by NiO/Ni2O3 won’t be affected by 2-propanol, which suggests Ni2O3-x prefer to oxidize secondary alcohol and thus have higher tendency to oxidize glycerol into DHA.

第一章 緒論 1 1.1. 研究動機 1 第二章 文獻回顧與探討 2 2.1. 氫氣經濟 2 2.2. 有機物做為燃料產氫 2 2.3. 甘油反應路徑 3 2.4. 觸媒用於電催化甘油 5 2.4.1. 白金類觸媒 6 2.4.2. 金類觸媒 7 2.4.3. 觸媒撐體(catalyst support) 7 2.4.4. 過渡金屬類觸媒 8 2.5. 影響甘油電催化選擇率因素 9 2.5.1. 晶面 9 2.5.2. 表面電子結構 10 2.5.3. 電解液 11 2.5.4. 動力學 12 2.6. 鎳用於有機物催化 13 第三章 實驗設備及方法 17 3.1. 實驗藥品、設備及分析儀器 17 3.2. 基材準備 18 3.3. 觸媒製備 19 3.4. 電化學量測 21 3.5. 儀器分析原理 23 3.5.1. 場發式掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope) 23 3.5.2. 第二代D2 PHASER X光繞射儀 (D2 PHASER 2nd generation X-ray Diffractometer) 23 3.5.3. 化學分析影像能譜儀 (electron spectroscopy for chemical analysis system) ………………………………………………………………………..24 3.5.4. 穿透式電子顯微鏡 (transmission electron microscope, TEM) 24 3.5.5. 拉曼光譜分析法 (Raman spectroscopy) 24 3.5.6. In-situ拉曼光譜分析 (in-situ Raman spectroscopy) 28 3.5.7. 高效能液相層析儀(high performance liquid chromatography, HPLC) 28 3.5.8. 氣相層析儀(gas Chromatography, GC) 30 3.5.9. 線性掃描伏安法 (linear sweep voltammetry, LSV) 30 3.5.10. 循環伏安法 (cyclic voltammetry, CV) 31 3.5.11. 計時電流法 (chronoamperometry) 31 3.5.12. 電化學阻抗譜 (electrochemical Impedance spectroscopy, EIS) 31 第四章 結果與討論 33 4.1. 材料分析 33 4.1.1. 表面結構之分析 33 4.1.2. 晶體表面繞射之分析 34 4.1.3. 拉曼光譜分析 35 4.1.4. 化學分析影像能譜儀之分析 35 4.1.5. 穿透式電子顯微鏡之分析 38 4.2. 電化學表現 39 4.3. 產物分析 44 4.3.1. 施加電位之影響 44 4.4. In-situ Raman光譜分析 54 4.5. In-situ拉曼光譜分析反應不同醇類之活性位點 59 4.6. Ni2O3-x之甘油電催化反應路徑 63 4.7. 不同甘油濃度之分析 68 4.8. 氣相產物分析 72 第五章 結論 76 第六章 參考文獻 77 附錄 ………………………………………………………………………………...92 附錄一. 高效能液相層析儀 92 附錄二. 氣相層析儀 94

[1] M.Ball, M.Weeda, The hydrogen economy - Vision or reality?, Int. J. Hydrogen Energy. 40 (2015) 7903–7919.
[2] J.O.Abe, A.P.I.Popoola, E.Ajenifuja, O.M.Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy. 44 (2019) 15072–15086.
[3] Y.Nam, Y.X.Yeng, A.Lenert, P.Bermel, I.Celanovic, M.Soljačić, E.N.Wang, Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters, Sol. Energy Mater. Sol. Cells. 122 (2014) 287–296.
[4] C.Coutanceau, S.Baranton, R.S.B.Kouamé, Selective electrooxidation of glycerol into value-added chemicals: A short overview, Front. Chem. 7 (2019) 1–15.
[5] A.Villa, N.Dimitratos, C.E.Chan-Thaw, C.Hammond, L.Prati, G.J.Hutchings, Glycerol oxidation using gold-containing catalysts, Acc. Chem. Res. 48 (2015) 1403–1412.
[6] M.A.Dasari, P.P.Kiatsimkul, W.R.Sutterlin, G.J.Suppes, Low-pressure hydrogenolysis of glycerol to propylene glycol, Appl. Catal. A Gen. 281 (2005) 225–231.
[7] S.Schünemann, F.Schüth, H.Tüysüz, Selective glycerol oxidation over ordered mesoporous copper aluminum oxide catalysts, Catal. Sci. Technol. 7 (2017) 5614–5624.
[8] Y.Chen, M.Salciccioli, D.G.Vlachos, An efficient reaction pathway search method applied to the decomposition of glycerol on platinum, J. Phys. Chem. C. 115 (2011) 18707–18720.
[9] K.E.You, S.C.Ammal, Z.Lin, W.Wan, J.G.Chen, A.Heyden, Understanding the effect of Mo2C support on the activity of Cu for the hydrodeoxygenation of glycerol, J. Catal. 388 (2020) 141–153.
[10] S.Lee, H.J.Kim, S.M.Choi, M.H.Seo, W.B.Kim, The promotional effect of Ni on bimetallic PtNi/C catalysts for glycerol electrooxidation, Appl. Catal. A Gen. 429–430 (2012) 39–47.
[11] T.A.Degfie, T.T.Mamo, Y.S.Mekonnen, Optimized Biodiesel Production from Waste Cooking Oil (WCO) using Calcium Oxide (CaO) Nano-catalyst, Sci. Rep. 9 (2019) 1–8.
[12] C.Liu, M.Hirohara, T.Maekawa, R.Chang, T.Hayashi, C.Y.Chiang, Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst – CuO, Appl. Catal. B Environ. 265 (2020) 118543.
[13] G.L.Caneppele, T.S.Almeida, C.R.Zanata, É.Teixeira-Neto, P.S.Fernández, G.A.Camara, C.A.Martins, Exponential improving in the activity of Pt/C nanoparticles towards glycerol electrooxidation by Sb ad-atoms deposition, Appl. Catal. B Environ. 200 (2017) 114–120.
[14] U.B.Demirci, Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells, J. Power Sources. 173 (2007) 11–18.
[15] Y.Kwon, Y.Birdja, I.Spanos, P.Rodriguez, M.T.M.Koper, Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth, ACS Catal. 2 (2012) 759–764.
[16] J.H.Zhang, Y.J.Liang, N.Li, Z.Y.Li, C.W.Xu, S.P.Jiang, A remarkable activity of glycerol electrooxidation on gold in alkaline medium, Electrochim. Acta. 59 (2012) 156–159.
[17] M.Simões, S.Baranton, C.Coutanceau, Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration, Appl. Catal. B Environ. 93 (2010) 354–362.
[18] G.A.B.Mello, C.Busó-Rogero, E.Herrero, J.M.Feliu, Glycerol electrooxidation on Pd modified Au surfaces in alkaline media: Effect of the deposition method, J. Chem. Phys. 150 (2019).
[19] M.Iwanow, T.Gärtner, V.Sieber, B.König, Activated carbon as catalyst support: Precursors, preparation, modification and characterization, Beilstein J. Org. Chem. 16 (2020) 1188–1202.
[20] Y.Zhou, Y.Shen, Selective electro-oxidation of glycerol over Pd and Pt@Pd nanocubes, Electrochem. Commun. 90 (2018) 106–110.
[21] Y.Zhou, Y.Shen, J.Xi, X.Luo, Selective Electro-Oxidation of Glycerol to Dihydroxyacetone by PtAg Skeletons, ACS Appl. Mater. Interfaces. 11 (2019) 28953–28959.
[22] Y.Zuo, L.Wu, K.Cai, T.Li, W.Yin, D.Li, N.Li, J.Liu, H.Han, Platinum Dendritic-Flowers Prepared by Tellurium Nanowires Exhibit High Electrocatalytic Activity for Glycerol Oxidation, ACS Appl. Mater. Interfaces. 7 (2015) 17725–17730.
[23] X.Yang, Q.Wang, S.Qing, Z.Gao, X.Tong, N.Yang, Modulating Electronic Structure of an Au-Nanorod-Core–PdPt-Alloy-Shell Catalyst for Efficient Alcohol Electro-Oxidation, Adv. Energy Mater. 11 (2021).
[24] T.G.Vo, P.Y.Ho, C.Y.Chiang, Operando mechanistic studies of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide, Appl. Catal. B Environ. 300 (2022) 120723.
[25] M.S.E.Houache, K.Hughes, R.Safari, G.A.Botton, E.A.Baranova, Modification of Nickel Surfaces by Bismuth: Effect on Electrochemical Activity and Selectivity toward Glycerol, ACS Appl. Mater. Interfaces. 12 (2020) 15095–15107.
[26] L.Hu, Q.Peng, Y.Li, Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal, J. Am. Chem. Soc. 130 (2008) 16136–16137.
[27] Y.W.Lee, S.B.Han, D.Y.Kim, K.W.Park, Monodispersed platinum nanocubes for enhanced electrocatalytic properties in alcohol electrooxidation, Chem. Commun. 47 (2011) 6296–6298.
[28] C.Nan, J.Lu, C.Chen, Q.Peng, Y.Li, Solvothermal synthesis of lithium iron phosphate nanoplates, J. Mater. Chem. 21 (2011) 9994–9996.
[29] A.C.Garcia, Y.Y.Birdja, G.Tremiliosi-Filho, M.T.M.Koper, Glycerol electro-oxidation on bismuth-modified platinum single crystals, J. Catal. 346 (2017) 117–124.
[30] T.G.Vo, C.C.Kao, J.L.Kuo, C. chauChiu, C.Y.Chiang, Unveiling the crystallographic facet dependence of the photoelectrochemical glycerol oxidation on bismuth vanadate, Appl. Catal. B Environ. 278 (2020) 119303.
[31] K.A.Stoerzinger, R.R.Rao, X.R.Wang, W.T.Hong, C.M.Rouleau, Y.Shao-Horn, The Role of Ru Redox in pH-Dependent Oxygen Evolution on Rutile Ruthenium Dioxide Surfaces, Chem. 2 (2017) 668–675.
[32] X.Y.Zhang, F.T.Li, J.Zhao, B.Dong, F.L.Wang, Z.X.Wu, L.Wang, Y.M.Chai, C.G.Liu, Tailoring the d-band centers of FeP nanobelt arrays by fluorine doping for enhanced hydrogen evolution at high current density, Fuel. 316 (2022) 123206.
[33] S.Shen, Z.Wang, Z.Lin, K.Song, Q.Zhang, F.Meng, L.Gu, W.Zhong, Crystalline‐Amorphous Interfaces Coupling of CoSe 2 /CoP with Optimized d‐band Center and Boosted Electrocatalytic Hydrogen Evolution , Adv. Mater. (2022) 2110631.
[34] S.Lee, H.J.Kim, E.J.Lim, Y.Kim, Y.Noh, G.W.Huber, W.B.Kim, Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process, Green Chem. 18 (2016) 2877–2887.
[35] D.Liu, J.C.Liu, W.Cai, J.Ma, H.BinYang, H.Xiao, J.Li, Y.Xiong, Y.Huang, B.Liu, Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone, Nat. Commun. 10 (2019).
[36] M.B.C.DeSouza, R.A.Vicente, V.Y.Yukuhiro, C.T.G.Pires, W.Cheuquepán, J.L.Bott-Neto, J.Solla-Gullón, P.S.Fernández, Bi-modified Pt Electrodes toward Glycerol Electrooxidation in Alkaline Solution: Effects on Activity and Selectivity, ACS Catal. 9 (2019) 5104–5110.
[37] A.M.Verma, L.Laverdure, M.M.Melander, K.Honkala, Mechanistic Origins of the pH Dependency in Au-Catalyzed Glycerol Electro-oxidation: Insight from First-Principles Calculations, ACS Catal. 12 (2022) 662–675.
[38] X.Huang, Y.Zou, J.Jiang, Electrochemical Oxidation of Glycerol to Dihydroxyacetone in Borate Buffer: Enhancing Activity and Selectivity by Borate-Polyol Coordination Chemistry, ACS Sustain. Chem. Eng. 9 (2021) 14470–14479.
[39] Z.Zhang, L.Xin, J.Qi, Z.Wang, W.Li, Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst, Green Chem. 14 (2012) 2150–2152.
[40] L.Huang, J.Y.Sun, S.H.Cao, M.Zhan, Z.R.Ni, H.J.Sun, Z.Chen, Z.Y.Zhou, E.G.Sorte, Y.Y.J.Tong, S.G.Sun, Combined EC-NMR and in Situ FTIR Spectroscopic Studies of Glycerol Electrooxidation on Pt/C, PtRu/C, and PtRh/C, ACS Catal. 6 (2016) 7686–7695.
[41] J.González-Cobos, S.Baranton, C.Coutanceau, Development of Bismuth-Modified PtPd Nanocatalysts for the Electrochemical Reforming of Polyols into Hydrogen and Value-Added Chemicals, ChemElectroChem. 3 (2016) 1694–1704.
[42] Z.Liu, S.W.Tay, X.Li, Rechargeable battery using a novel iron oxide nanorods anode and a nickel hydroxide cathode in an aqueous electrolyte, Chem. Commun. 47 (2011) 12473–12475.
[43] H.Wang, G.Wang, Y.Ling, F.Qian, Y.Song, X.Lu, S.Chen, Y.Tong, Y.Li, High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode, Nanoscale. 5 (2013) 10283–10290.
[44] M.Gong, W.Zhou, M.C.Tsai, J.Zhou, M.Guan, M.C.Lin, B.Zhang, Y.Hu, D.Y.Wang, J.Yang, S.J.Pennycook, B.J.Hwang, H.Dai, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nat. Commun. 5 (2014) 1–6.
[45] J.Li, Y.Zuo, J.Liu, X.Wang, X.Yu, R.Du, T.Zhang, M.F.Infante-Carrió, P.Tang, J.Arbiol, J.Llorca, Z.Luo, A.Cabot, Superior methanol electrooxidation performance of (110)-faceted nickel polyhedral nanocrystals, J. Mater. Chem. A. 7 (2019) 22036–22043.
[46] I.S.Pieta, A.Lewalska-Graczyk, P.Pieta, G.Garbarino, G.Busca, M.Holdynski, G.Kalisz, A.Sroka-Bartnicka, R.Nowakowski, M.Naushad, M.B.Gawande, R.Zbořil, Graphitic carbon nitride-nickel catalyst: From material characterization to efficient ethanol electrooxidation, ACS Sustain. Chem. Eng. 8 (2020) 7244–7255.
[47] M.S.E.Houache, E.Cossar, S.Ntais, E.A.Baranova, Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation, J. Power Sources. 375 (2018) 310–319.
[48] H.Jiang, T.Zhao, C.Li, J.Ma, Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors, J. Mater. Chem. 21 (2011) 3818–3823.
[49] K.H.Young, L.Wang, S.Yan, X.Liao, T.Meng, H.Shen, W.C.Mays, Fabrications of high-capacity alpha-ni(Oh) 2, Batteries. 3 (2017).
[50] D.Friebel, M.W.Louie, M.Bajdich, K.E.Sanwald, Y.Cai, A.M.Wise, M.J.Cheng, D.Sokaras, T.C.Weng, R.Alonso-Mori, R.C.Davis, J.R.Bargar, J.K.Nørskov, A.Nilsson, A.T.Bell, Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting, J. Am. Chem. Soc. 137 (2015) 1305–1313.
[51] Y.F.Li, A.Selloni, Mechanism and activity of water oxidation on selected surfaces of pure and Fe-Doped NiOx, ACS Catal. 4 (2014) 1148–1153.
[52] Y.H.Chung, I.Jang, J.H.Jang, H.S.Park, H.C.Ham, J.H.Jang, Y.K.Lee, S.J.Yoo, Anomalous in situ Activation of Carbon-Supported Ni2P Nanoparticles for Oxygen Evolving Electrocatalysis in Alkaline Media, Sci. Rep. 7 (2017) 1–8.
[53] M.W.Louie, A.T.Bell, An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen, J. Am. Chem. Soc. 135 (2013) 12329–12337.
[54] L.Dong, G.R.Chang, Y.Feng, X.Z.Yao, X.Y.Yu, Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis, Rare Met. 41 (2022) 1583–1594.
[55] D.M.Morales, D.Jambrec, M.A.Kazakova, M.Braun, N.Sikdar, A.Koul, A.C.Brix, S.Seisel, C.Andronescu, W.Schuhmann, Electrocatalytic Conversion of Glycerol to Oxalate on Ni Oxide Nanoparticles-Modified Oxidized Multiwalled Carbon Nanotubes, ACS Catal. 12 (2022) 982–992.
[56] K.Wan, J.Luo, C.Zhou, T.Zhang, J.Arbiol, X.Lu, B.W.Mao, X.Zhang, J.Fransaer, Hierarchical Porous Ni 3 S 4 with Enriched High-Valence Ni Sites as a Robust Electrocatalyst for Efficient Oxygen Evolution Reaction, Adv. Funct. Mater. 29 (2019) 1–8.
[57] N.Zhang, X.Feng, D.Rao, X.Deng, L.Cai, B.Qiu, R.Long, Y.Xiong, Y.Lu, Y.Chai, Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation, Nat. Commun. 11 (2020) 1–11.
[58] X.Yi, F.Yin, X.He, G.Li, Partially reduced NiO by cellulose as a highly active catalyst for oxygen evolution reaction: synergy between in situ generated Ni3+ and lattice oxygen, Int. J. Energy Res. 45 (2021) 15544–15556.
[59] X.Xu, L.Li, J.Huang, H.Jin, X.Fang, W.Liu, N.Zhang, H.Wang, X.Wang, Engineering Ni3+ Cations in NiO Lattice at the Atomic Level by Li+ Doping: The Roles of Ni3+ and Oxygen Species for CO Oxidation, ACS Catal. 8 (2018) 8033–8045.
[60] A.M.Elseman, L.Luo, Q.L.Song, Self-doping synthesis of trivalent Ni2O3as a hole transport layer for high fill factor and efficient inverted perovskite solar cells, Dalt. Trans. 49 (2020) 14243–14250.
[61] M.Shaban, M.R.Abukhadra, A.Hamd, Recycling of glass in synthesis of MCM-48 mesoporous silica as catalyst support for Ni2O3 photocatalyst for Congo red dye removal, Clean Technol. Environ. Policy. 20 (2018) 13–28.
[62] N.M.Vuong, N.M.Hieu, H.N.Hieu, H.Yi, D.Kim, Y.S.Han, M.Kim, Ni2O3-decorated SnO2 particulate films for methane gas sensors, Sensors Actuators, B Chem. 192 (2014) 327–333.
[63] M.Safeer N. K., C.Alex, R.Jana, A.Datta, N.S.John, Remarkable CO x tolerance of Ni 3+ active species in a Ni 2 O 3 catalyst for sustained electrochemical urea oxidation , J. Mater. Chem. A. 10 (2022) 4209–4221.
[64] S.Dey, S.Bhattacharjee, M.G.Chaudhuri, R.S.Bose, S.Halder, C.K.Ghosh, Synthesis of pure nickel(iii) oxide nanoparticles at room temperature for Cr(vi) ion removal, RSC Adv. 5 (2015) 54717–54726.
[65] J.S.Maria Nithya, A.Pandurangan, Efficient mixed metal oxide routed synthesis of boron nitride nanotubes, RSC Adv. 4 (2014) 26697–26705.
[66] R.Chen, C.Yang, W.Cai, H.Y.Wang, J.Miao, L.Zhang, S.Chen, B.Liu, Use of Platinum as the Counter Electrode to Study the Activity of Nonprecious Metal Catalysts for the Hydrogen Evolution Reaction, ACS Energy Lett. 2 (2017) 1070–1075.
[67] G.Jerkiewicz, Applicability of Platinum as a Counter-Electrode Material in Electrocatalysis Research, ACS Catal. 12 (2022) 2661–2670.
[68] E.Howard, Modern condensed matter physics, Contemp. Phys. 60 (2019) 268–268.
[69] L.Escalera-Moreno, J.J.Baldoví, A.Gaita-Ariño, E.Coronado, Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: A critical perspective, Chem. Sci. 9 (2018) 3265–3275.
[70] I.Iatsunskyi, G.Nowaczyk, S.Jurga, V.Fedorenko, M.Pavlenko, V.Smyntyna, One and two-phonon Raman scattering from nanostructured silicon, Optik (Stuttg). 126 (2015) 1650–1655.
[71] X.Zhang, X.F.Qiao, W.Shi, J.BinWu, D.S.Jiang, P.H.Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material, Chem. Soc. Rev. 44 (2015) 2757–2785.
[72] B.Kavitha, M.Nirmala, A.Pavithra, Annealing effect on nickel oxide nanoparticles synthesized by sol-gel method, World Sci. News. 52 (2016) 118–129.
[73] F.Hajakbari, M.Taheri Afzali, A.Hojabri, Nanocrystalline Nickel Oxide (NiO) thin films grown on quartz substrates: Influence of annealing temperatures, Acta Phys. Pol. A. 131 (2017) 417–419.
[74] K.P.Lim, S.W.Ng, L.N.Lau, M.M.A.Kechik, S.K.Chen, S.A.Halim, Unusual electrical behaviour in sol–gel-synthesised PKMO nano-sized manganite, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1–10.
[75] J.Wang, L.Ma, X.Wang, X.Wang, J.Yao, Q.Yi, R.Tang, G.Zou, Sub-Nanometer Thick Wafer-Size NiO Films with Room-Temperature Ferromagnetic Behavior, Angew. Chemie - Int. Ed. 60 (2021) 25020–25027.
[76] A.Y.Faid, A.O.Barnett, F.Seland, S.Sunde, Ni/NiO nanosheets for alkaline hydrogen evolution reaction: In situ electrochemical-Raman study, Electrochim. Acta. 361 (2020) 137040.
[77] X.Ni, Q.Zhao, F.Zhou, H.Zheng, J.Cheng, B.Li, Synthesis and characterization of NiO strips from a single source, J. Cryst. Growth. 289 (2006) 299–302.
[78] Y.Shen, X.Yan, Z.Bai, X.Zheng, Y.Sun, Y.Liu, P.Lin, X.Chen, Y.Zhang, A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction, RSC Adv. 5 (2015) 5976–5981.
[79] P.T.Babar, A.C.Lokhande, M.G.Gang, B.S.Pawar, S.M.Pawar, J.H.Kim, Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application, J. Ind. Eng. Chem. 60 (2018) 493–497.
[80] Q.Wang, X.Huang, Z.L.Zhao, M.Wang, B.Xiang, J.Li, Z.Feng, H.Xu, M.Gu, Ultrahigh-Loading of Ir Single Atoms on NiO Matrix to Dramatically Enhance Oxygen Evolution Reaction, J. Am. Chem. Soc. 142 (2020) 7425–7433.
[81] J.Li, R.Lian, J.Wang, S.He, S.P.Jiang, Z.Rui, Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction, Electrochim. Acta. 331 (2020) 135395.
[82] D.Delgado, M.Minakshi, D.J.Kim, C.Kyeong W, Influence of the Oxide Content in the Catalytic Power of Raney Nickel in Hydrogen Generation, Anal. Lett. 50 (2017) 2386–2401.
[83] Q.Ma, C.Hu, K.Liu, S.F.Hung, D.Ou, H.M.Chen, G.Fu, N.Zheng, Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction, Nano Energy. 41 (2017) 148–153.
[84] L.Wang, J.Liang, X.Zhang, S.Li, T.Wang, F.Ma, J.Han, Y.Huang, Q.Li, An effective dual-modification strategy to enhance the performance of LiNi0.6Co0.2Mn0.2O2cathode for Li-ion batteries, Nanoscale. 13 (2021) 4670–4677.
[85] C.L.Chang, S.K.R.S.Sankaranarayanan, D.Ruzmetov, M.H.Engelhard, E.Kaxiras, S.Ramanathan, Compositional tuning of ultrathin surface oxides on metal and alloy substrates using photons: Dynamic simulations and experiments, Phys. Rev. B - Condens. Matter Mater. Phys. 81 (2010) 1–13.
[86] N.Nickel, O.Radiolysis, Novel Surfactants Supported Room Temperature Synthesis of, 3 (2015) 138–158.
[87] D.Liu, D.Li, D.Yang, Size-dependent magnetic properties of branchlike nickel oxide nanocrystals, AIP Adv. 7 (2017).
[88] C.Manjunatha, N.Srinivasa, S.K.Chaitra, M.Sudeep, R.Chandra Kumar, S.Ashoka, Controlled synthesis of nickel sulfide polymorphs: studies on the effect of morphology and crystal structure on OER performance, Mater. Today Energy. 16 (2020) 100414.
[89] Y.Yang, Q.Zhou, L.Jiao, Q.Yin, Z.Li, Z.Zhang, Z.Hu, Amorphous heterogeneous NiFe-LDH@Co(OH)2 supported on nickel foam as efficient OER electrocatalysts, Ionics (Kiel). 28 (2022) 341–351.
[90] R.K.Singh, R.Devivaraprasad, T.Kar, A.Chakraborty, M.Neergat, Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support, J. Electrochem. Soc. 162 (2015) F489–F498.
[91] X.Huang, Y.Guo, Y.Zou, J.Jiang, Electrochemical oxidation of glycerol to hydroxypyruvic acid on cobalt (oxy)hydroxide by high-valent cobalt redox centers, Appl. Catal. B Environ. 309 (2022) 121247.
[92] L.Thia, M.Xie, Z.Liu, X.Ge, Y.Lu, W.E.Fong, X.Wang, Copper-Modified Gold Nanoparticles as Highly Selective Catalysts for Glycerol Electro-Oxidation in Alkaline Solution, ChemCatChem. 8 (2016) 3272–3278.
[93] L.Xin, Z.Zhang, Z.Wang, W.Li, Simultaneous Generation of Mesoxalic Acid and Electricity from Glycerol on a Gold Anode Catalyst in Anion-Exchange Membrane Fuel Cells, ChemCatChem. 4 (2012) 1105–1114.
[94] M.S.E.Houache, M.G.Sandoval, R.Safari, F.Gaztañaga, F.Escudero, A.Hernández-Laguna, C.I.Sainz-Díaz, G.A.Botton, P.V.Jasen, E.A.González, A.Juan, E.A.Baranova, Morphology alteration of nickel microstructures for glycerol electrooxidation, J. Catal. 404 (2021) 348–361.
[95] M.S.E.Houache, K.Hughes, A.Ahmed, R.Safari, H.Liu, G.A.Botton, E.A.Baranova, Electrochemical Valorization of Glycerol on Ni-Rich Bimetallic NiPd Nanoparticles: Insight into Product Selectivity Using in Situ Polarization Modulation Infrared-Reflection Absorption Spectroscopy, ACS Sustain. Chem. Eng. 7 (2019) 14425–14434.
[96] Y.Kang, W.Wang, Y.Pu, J.Li, D.Chai, Z.Lei, An effective Pd-NiOx-P composite catalyst for glycerol electrooxidation: Co-existed phosphorus and nickel oxide to enhance performance of Pd, Chem. Eng. J. 308 (2017) 419–427.
[97] J.Zhang, Y.Shen, Electro-Oxidation of Glycerol into Formic Acid by Nickel-Copper Electrocatalysts, J. Electrochem. Soc. 168 (2021) 084510.
[98] Y.Xu, M.Liu, S.Wang, K.Ren, M.Wang, Z.Wang, X.Li, L.Wang, H.Wang, Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays, Appl. Catal. B Environ. 298 (2021).
[99] V.L.Oliveira, C.Morais, K.Servat, T.W.Napporn, G.Tremiliosi-Filho, K.B.Kokoh, Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium, Electrochim. Acta. 117 (2014) 255–262.
[100] N.Mironova-Ulmane, A.Kuzmin, I.Sildos, L.Puust, J.Grabis, Magnon and Phonon Excitations in Nanosized NiO, Latv. J. Phys. Tech. Sci. 56 (2019) 61–72.
[101] J.Huang, Y.Li, Y.Zhang, G.Rao, C.Wu, Y.Hu, X.Wang, R.Lu, Y.Li, J.Xiong, Identification of Key Reversible Intermediates in Self-Reconstructed Nickel-Based Hybrid Electrocatalysts for Oxygen Evolution, Angew. Chemie - Int. Ed. 58 (2019) 17458–17464.
[102] Z.Qiu, Y.Ma, T.Edvinsson, In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting, Nano Energy. 66 (2019) 104118.
[103] M.Han, C.Wang, J.Zhong, J.Han, N.Wang, A.Seifitokaldani, Y.Yu, Y.Liu, X.Sun, A.Vomiero, H.Liang, Promoted self-construction of β-NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction, Appl. Catal. B Environ. 301 (2022) 120764.
[104] M.W.Louie, A.T.Bell, An Investigation of Thin-Film Ni − Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen, (2013).
[105] B.S.Yeo, A.T.Bell, In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen, J. Phys. Chem. C. 116 (2012) 8394–8400.
[106] K.Tajima, M.Nakagawa, Y.Oishi, H.Ohta, Electrochemical Analysis of Optical Switchable Filter with a NiO Thin Film for High-Performance Incubators, ECS Meet. Abstr. MA2016-02 (2016) 3897–3897.
[107] R.C.Korošec, P.Bukovec, Cerc Korošec and Bukovec Sol-Gel Prepared NiO Thin Films for, Acta Chim. Slov. 53 (2006) 136–147.
[108] R.Luo, Y.Li, L.Xing, N.Wang, R.Zhong, Z.Qian, C.Du, G.Yin, Y.Wang, L.Du, A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural, Appl. Catal. B Environ. 311 (2022) 121357.
[109] A.Romero Hernández, E.M.Arce Estrada, A.Ezeta, M.E.Manríquez, Formic acid oxidation on AuPd core-shell electrocatalysts: Effect of surface electronic structure, Electrochim. Acta. 327 (2019).
[110] J.dePaula, D.Nascimento, J.J.Linares, Influence of the anolyte feed conditions on the performance of an alkaline glycerol electroreforming reactor, J. Appl. Electrochem. 45 (2015) 689–700.
[111] V.L.Oliveira, C.Morais, K.Servat, T.W.Napporn, P.Olivi, K.B.Kokoh, G.Tremiliosi-Filho, Kinetic Investigations of Glycerol Oxidation Reaction on Ni/C, Electrocatalysis. 6 (2015) 447–454.
[112] Z.Zhang, L.Xin, W.Li, Supported gold nanoparticles as anode catalyst for anion-exchange membrane-direct glycerol fuel cell (AEM-DGFC), Int. J. Hydrogen Energy. 37 (2012) 9393–9401.

無法下載圖示 全文公開日期 2025/02/04 (校內網路)
全文公開日期 2025/02/04 (校外網路)
全文公開日期 2025/02/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE