簡易檢索 / 詳目顯示

研究生: 黃文生
Wen-Sheng Huang
論文名稱: 三維網狀氫氧化鎳複合奈米鑽石在非酵素型葡萄糖感測器之研究
Three-dimension nickel hydroxide with ultrananocrystalline diamond on copper mesh for non-enzymatic glucose sensors
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-Kay Jou
許正良
Cheng-Liang Hsu
章詠湟
Yung-Huang Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 泡沫銅氫氧化鎳奈米鑽石非酵素型葡萄糖感測器
外文關鍵詞: copper foam, Ni(OH)2, NUNCD, non-enzyme glucose sensor
相關次數: 點閱:252下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以泡沫銅來當作工作電極,再利用氫氧化鎳(水熱法)、奈米鑽石(NUNCD)來做非酵素型葡萄糖感測器的修飾,在氫氧化鎳和奈米鑽石介面形成鍵結來維持穩定度,並改善泡沫銅隨時間氧化產生靈敏度衰減的現象,根據不同參數來實驗出最佳的非酵素型葡萄糖感測器條件。水熱法氫氧化鎳有最好的靈敏度為 8257.6μAmM-1cm-2 (0.5~2 mM)、LOD為 2.492 μM。低濃度下水熱法氫氧化鎳靈敏度為18964 (5~40μm)、LOD為 2.141 μM。

    退火奈米鑽石的添加降低試片整體衰減性,對於水熱法氫氧化鎳靈敏度在大氣環境下放置7天後衰減程度減少為 6.6~9.7%。,添加退火奈米鑽石的水熱法氫氧化鎳有最好的靈敏度為 4753.6μAmM-1cm-2 (0.5~2 mM)、LOD為2.179μM。


    In this study, we report nickel hydroxide (Ni(OH)2) and nitrogen incorporated ultrananocrystalline diamond (N-UNCD)/(Ni(OH)2) on copper foam for non-enzyme glucose sensor. Initially, the hydrothermal growth condition of (Ni(OH)2) was optimized to study their glucose sensing properties. It was revealed that the best sensitivity of hydrothermal Ni(OH)2 is 8257.6 µAmM-1cm-2 (0.5~2 mM), LOD is 2.492 μM. On the other hand, the Ni(OH)2/copper foam exhibits the low concentration glucose sensitivity of 18964 µAmM-1cm-2 (5~40μm), LOD is 2.141 μM, respectively. This result is 10 times better than the sensitivity of high glucose concentration measurements. The stability of the Ni(OH)2/copper foam was then measured after 7 days, which shows the decay of 28.5%. To overcome the decay of Ni(OH)2/copper foam electrode, N-UNCD was grown on copper foam with and without anneal. Thus, the highest sensitivity of Ni(OH)2 /N-UNCD/copper foam is 4753.6 µAmM-1cm-2 (0.5~2 mM), LOD is 2.179μM. However, despite the sensitivity of Ni(OH)2 /N-UNCD/copper foam is not as high as compared with the Ni(OH)2/copper foam electrode, still the stability of the annealed N-UNCD exhibits only 6 to 9% of decay after 7 days. This is because the chemical stability of N-UNCD in electrolyte solution and the electrocatalytic behavior of Ni(OH)2/copper foam. Furthermore, the synergistic effect between N-UNCD and Ni(OH)2/copper foam enhances the stability of Ni(OH)2/N-UNCD/copper foam electrode based glucose sensor.

    目錄 中文摘要 I 英文摘要 II 目錄 III 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 氫氧化鎳 4 2.1.1 氫氧化鎳的特性 4 2.1.2 氫氧化鎳水熱法成長機制 …5 2.1.3 氫氧化鎳水熱法成長機制 6 2.1.4 超奈米鑽石成長機制 6 2.2 鑽石薄膜 12 2.2.1 鑽石薄膜的結構與特性 12 2.2.2奈米結晶鑽石 12 2.2.3 超奈米結晶鑽石 13 2.3 電化學分析 13 2.3.1 電化學分析法之簡介 13 2.3.2 電化學分析法之種類 14 2.4 生物感測器 16 2.4.1 生物感測器之簡介 16 2.4.2 生物感測器之種類 17 2.5 葡萄糖感測器 20 2.5.1 葡萄糖感測之發展世代 20 2.5.2 葡萄糖感測器之檢測方式 22 2.5.3 非酵素型葡萄糖感測器之電極與修飾物種類 23 第三章 實驗方法 25 3.1 實驗流程 25 3.2 網狀氫氧化鎳的製備 27 3.2-1 泡沫銅前處理 27 3.2-2 水熱法網狀氫氧化鎳之成長方法 28 3.3 奈米鑽石之製備方法 29 3.3.1 泡沫銅前處理 29 3.3.2 以鑽石粉末及鈦金屬粉末震盪製備種子層 30 3.3.3 以微波電漿化學氣象沉積法(Microwave Plasma Chemical Vapor Deposition System)成長奈米鑽石薄膜 31 3.4 葡萄糖感測器試片封裝及循環伏安法表面改質 32 3.4.1 葡萄糖試片封裝 33 3.4.2 葡萄糖感測器表面改質 34 3.5 實驗分析儀器介紹 34 3.5.1 場發射掃描式電子顯微鏡 (FE-SEM) 35 3.5.2 顯微拉曼光譜儀 (Micro-Raman) 36 3.5.3 D2 PHASER X光繞射儀 37 3.5.4 X射線光電子能譜儀 (XPS) 38 3.5.5 電化學分析儀 (Electrochemical Workstation) 39 第四章 水熱法三維網狀氫氧化鎳之合成及特性分析 40 4.1 水熱法三維網狀氫氧化鎳之表面型態分析 42 4.2 水熱法三維網狀氫氧化鎳之X光繞射儀分析 47 4.3 水熱法三維網狀氫氧化鎳之拉曼光譜儀分析 48 4.4 水熱法三維網狀氫氧化鎳之X射線光電子能譜儀分析 49 4.5 水熱法三維網狀氫氧化鎳之葡萄糖量測電化學分析 50 4.5.1 表面改質 50 4.5.2 循環伏安法分析 51 4.5.3 定電位沉積分析法 (靈敏度分析) 52 4.5.4 定電位沉積分析法 (選擇性分析) 58 4.5.5 定電位沉積分析法 (穩定度分析) 59 第五章 三維網狀氫氧化鎳/奈米鑽石之合成及特性分析 61 5.1 化學氣相沉積法奈米鑽石之表面型態分析 61 5.2 三維網狀氫氧化鎳/奈米鑽石之表面型態分析.......................................62 5.3 三維網狀氫氧化鎳/奈米鑽石之X光繞射儀分析 63 5.4 三維網狀氫氧化鎳/奈米鑽石之拉曼光譜儀分析 64 5.5 三維網狀氫氧化鎳/奈米鑽石之X射線光電子能譜儀分析 65 5.6 三維網狀氫氧化鎳/奈米鑽石之葡萄糖量測電化學分析 66 5.6.1 表面改質 67 5.6.2 循環伏安法分析 68 5.6.3 定電位沉積分析法 (靈敏度分析) 69 5.6.4 定電位沉積分析法 (選擇性分析) 72 5.6.5 定電位沉積分析法 (穩定度分析) 73 第六章 三維網狀氫氧化鎳/退火後奈米鑽石之合成及特性分析 73 6.1 三維網狀氫氧化鎳/退火後奈米鑽石之表面型態分析 73 6.2 三維網狀氫氧化鎳/退火後奈米鑽石之X光繞射儀分析 75 6.3 三維網狀氫氧化鎳/退火後奈米鑽石之拉曼光譜儀分析 76 6.4 三維網狀氫氧化鎳/退火後奈米鑽石之X射線光電子能譜儀分析 79 6.5 三維網狀氫氧化鎳/退火後奈米鑽石之葡萄糖量測電化學分析 80 6.5-1 表面改質 80 6.5-2 循環伏安法分析 82 6.5-3 定電位沉積分析法 (靈敏度分析) 86 6.5-4 定電位沉積分析法 (選擇性分析) 86 6.5-5 定電位沉積分析法 (穩定度分析) 88 第七章 結論與未來展望 89 7.1 結論 90 7.2 未來展望 91 參考文獻 92

    參考文獻
    [1] 全民糖尿病觀測站 http://www.diabetes.org.tw/wddt_heduc01.jsp?P_TNO=EDUC990010001&P_HCTG=A
    [2] 糖尿病的症狀與預防
    https://www.health2sync.com/blog/post/20180326/to-know-diabetes/
    [3] 《科學發展》2007年12月,420期,42 ~ 45頁https://scitechvista.nat.gov.tw/c/s97E.htm
    [4] 台北市政府衛生局 http://health.gov.taipei/Default.aspx?tabid=291&mid=947&itemid=23354
    [5] 台灣word http://www.twword.com/wiki/%E7%94%9F%E7%89%A9%E6%84%9F%E6%B8%AC%E5%99%A8
    [6] 環球智控網-解說生物傳感器基本知識 http://www.hqzk99.com/news/1418/4273.html
    [7] 高士軒.翁文慧,臨床醫療生物感測器發展及技術應用
    [8] Tarushee Ahujaa, Irfan Ahmad Mira, Devendra Kumara, Rajeshb, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials ,28 (2007) 791–805
    [9] Kathryn E. Toghill and Richard G. Compton, Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation, Int. J. Electrochem. Sci., 5 (2010) 1246 – 1301
    [10] 張紘銓、張意杰,非侵入式血醣研究,東南科技大學專題報告,2012
    [11] 呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學系碩士論文,2003
    [12] 蔡姓賢,偏振干涉術使用在量測旋光效應及葡萄糖濃度,國立中央大學機械工程研究所碩士論文,2007
    [13] Xu, W., Dai, S., Wang, X., He, X., Wang, M., Xi, Y., & Hu, C. (2015). Nanorod-aggregated flower-like CuO grown on a carbon fiber fabric for a super high sensitive non-enzymatic glucose sensor. Journal of Materials Chemistry B, 3(28), 5777-5785
    [14] Yang, Y., Wang, Y., Bao, X., & Li, H. (2016). Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose. Journal of Electroanalytical Chemistry, 775, 163-170
    [15] Streinz, C. C., Motupally, S., & Weidner, J. W. (1995). The effect of temperature and ethanol on the deposition of nickel hydroxide films. Journal of the Electrochemical Society, 142(12), 4051-4056
    [16] Girish S. Gund, Deepak P. Dubal, Supriya B. Jambure, Sujata S. Shinde, and Chandrakant D. Lokhande,Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties,J. Mater. Chem. A, 2013, 1, 4793–4803
    [17] Xin Zheng, Xiaoqin Yan, Yihui Sun, Yong Li, Minghua Li, Guangjie Zhang and Yue Zhang,Band alignment engineering for high-energy-density solid-state asymmetric supercapacitors with TiO2 insertion at the ZnO/Ni(OH)2 interface,J. Mater. Chem. A, 2016, 4, 17981–17987
    [18] Byung Hyun Min, Dae Woo Kim, Kyoung Hwan Kim, Hyung Ouk Choi, Sung Woo Jang, Hee-Tae Jung,Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode,CARBON 80 (2014) 446–452
    [19] A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, N. Manyala,Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications,J Mater Sci (2013) 48:6707–6712
    [20] 奈米鑽石-維基百科 https://zh.wikipedia.org/wiki/%E7%9F%B3%E5%A2%A8%E7%83%AF
    [21] 奈米鑽石的生醫應用-涂誌賢 psroc.org.tw/bimonth/download.php?d=1&cpid=178&did=3
    [22] He, J., Yin, Y. G., Wu, T., Li, D., & Huang, X. C. (2006). Design and solvothermal synthesis of luminescent copper (I)-pyrazolate coordination oligomer and polymer frameworks. Chemical Communications, (27), 2845-2847
    [23] Partoens, B., & Peeters, F. M. (2006). From graphene to graphite: Electronic structure around the K point. Physical Review B, 74(7), 075404
    [24] Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., ... & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. nature, 438(7065), 197
    [25] Khaled Parvez, Sheng Yang, Xinliang Feng, Klaus Müllen,Exfoliation of graphene via wet chemical routes,Synthetic Metals 210 (2015) 123–132
    [26] Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C. ... & Conrad, E. H. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191-1196
    [27] Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D. ... & Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters, 9(12), 4359-4363
    [28] 王茂章,形形色色長出碳和碳的同素異形體,http://wap.sciencenet.cn/blogview.aspx?id=448817
    [29] 電化學分析法-台灣Word http://www.twword.com/wiki/%E9%9B%BB%E5%8C%96%E5%AD%B8%E5%88%86%E6%9E%90%E6%B3%95
    [30] 劉茂煌,循環伏安法,http://www.teachers.fju.edu.tw/files/981/981015-1.pdf
    [31] 循環伏安法,http://m.instrument.com.cn/bbs/d-4866861-1.html
    [32] Su-Il Pyun, Jong-Won Lee,Progress in Corrosion Science and Engineering I,2009
    [33] Falahati, H. (2015). The development and characterization of a nickel/metal hydride microbattery for microfluidic applications(Doctoral dissertation)
    [34] Hall, D. S., Lockwood, D. J., Bock, C., & MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc. R. Soc. A, 471(2174), 20140792
    [35] McEwen, R. S. (1971). Crystallographic studies on nickel hydroxide and the higher nickel oxides. The Journal of Physical Chemistry, 75(12), 1782-1789
    [36] K. I. Pandya, W. E. O'Grady, D. A. Corrigan, J. McBreen, and R. W. Hoffman,Extended X-ray Absorption Fine Structure Investigations of Nickel Hydroxkies,1990
    [37] 國立台灣科技大學,貴重儀器中心
    [38] Richard L. McCreery,Raman Spectroscopy for C hemic a1 Analysis,2000
    [39] 國立台灣科技大學材料科學與工程系,顯微拉曼光譜儀標準操作流程
    [40] 林麗娟,X光繞射原理及其應用,1994
    [41] 國立台灣科技大學X光繞射實驗室
    [42] 利用環電位儀偵測氧化還原電位及電流,http://140.136.176.3/joom/data/menu/files/exp/CV
    [43] 石墨烯對於三維網狀氫氧化鎳在非酵素型葡萄糖感測器之研究2017吳哲維
    [44] Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., & MacDougall, B. R. (2012). Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel. The Journal of Physical Chemistry A, 116(25), 6771-6784
    [45] Dr. Jonathan, C.Y. Chung,Fuel cell technology and rechargeable batteries,http://slideplayer.com/slide/4522366/
    [46] Dai-Bin Kuang, Bing-Xin Lei, Yu-Ping Pan, Xiao-Yun Yu, and Cheng-Yong Su,Fabrication of Novel Hierarchical β-Ni(OH)2 and NiO Microspheres via an Easy Hydrothermal Process,J. Phys. Chem. C 2009, 113, 5508–5513
    [47] Hailiang Wang, Hernan Sanchez Casalongue, Yongye Liang, and Hongjie Da,Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials,J. AM. CHEM. SOC. 2010, 132, 7472–7477
    [48] Patil, R. A., Chang, C. P., Devan, R. S., Liou, Y., & Ma, Y. R. (2016). Impact of nanosize on supercapacitance: study of 1D nanorods and 2D thin-films of nickel oxide. ACS applied materials & interfaces, 8(15), 9872-9880
    [49] Lu, Q. H., Huang, R., Wang, L. S., Wu, Z. G., Li, C., Luo, Q., ... & Yan, P. X. (2015). Thermal annealing and magnetic anisotropy of NiFe thin films on n+-Si for spintronic device applications. Journal of Magnetism and Magnetic Materials, 394, 253-259
    [50] Parveen, N., & Cho, M. H. (2016). Self-assembled 3D flower-like nickel hydroxide nanostructures and their supercapacitor applications. Scientific reports, 6, 27318
    [51] Chunyan Guo, Yinmei Wang, Yongqing Zhao, and Cailing Xu,Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity,Anal. Methods, 2013, 5, 1644–1647
    [52] 石墨烯對於三維網狀氫氧化鎳在非酵素型葡萄糖感測器之研究. 2017. PhD 吳哲維
    [53] Soochan Kim, Sang Ha Lee, Misuk Cho, Youngkwan Lee,Solvent-assisted morphology confinement of a nickel sulfide nanostructure and it sapplication for non-enzymatic glucose sensor,Biosensors andBioelectronics85(2016)587–595
    [54] Zhong, A., Luo, X., Chen, L., Wei, S., Liang, Y., & Li, X. (2015). Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchimica Acta, 182(5-6), 1197-1204.
    [55] Shackery, I., Patil, U., Pezeshki, A., Shinde, N. M., Kang, S., Im, S., & Jun, S. C. (2016). Copper hydroxide nanorods decorated porous graphene foam electrodes for non-enzymatic glucose sensing. Electrochimica Acta, 191, 954-961
    [56] Liu, S., Hui, K. S., & Hui, K. N. (2016). Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors. ACS applied materials & interfaces, 8(5), 3258-3267
    [57] Espro, C., Leonardi, S. G., Bonavita, A., Galvagno, S., & Neri, G. (2016, February). CuO-Modified Cu Electrodes for Glucose Sensing. In Convegno Nazionale Sensori (pp. 90-96). Springer, Cham
    [58] Manikandan, A., Veeramani, V., Chen, S. M., Madhu, R., Lee, L., Medina, H. ... & Chueh, Y. L. (2016). Low-temperature chemical synthesis of three-dimensional hierarchical Ni (OH) 2-coated Ni microflowers for high-performance enzyme-free glucose sensor. The Journal of Physical Chemistry C, 120(45), 25752-25759
    [59]Xie, L., Asiri, A. M., & Sun, X. (2017). Monolithically integrated copper phosphide nanowire: An efficient electrocatalyst for sensitive and selective nonenzymatic glucose detection. Sensors and Actuators B: Chemical, 244, 11-16.
    [60] 微波電漿化學氣相沉積法於矽基材上成長鑽石薄膜
    http://aca.cust.edu.tw/pub/journal/38/38-01.pdf
    [61]高瞻自然科學教學平台,x射線光電子能譜儀
    http://highscope.ch.ntu.edu.tw/wordpress/?p=72999

    QR CODE