簡易檢索 / 詳目顯示

研究生: 茅哲騏
Che-Chi Mao
論文名稱: 10 GHz低雜訊快速鎖定頻率合成器晶片設計
10 GHz Low Noise and Fast-Locking Frequency Synthesizer Chip Design
指導教授: 黃進芳
Jhin-Fang Huang
劉榮宜
Ron-Yi Liu
口試委員: 徐敬文
Ching-Wen Hsue
張勝良
Sheng-Lyang Jang
陳國龍
Ching-Wen Hsue
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 95
中文關鍵詞: 低相位雜訊快速鎖定頻率合成器鎖相迴路
外文關鍵詞: low phase noise, fast-locking, frequency synthesizer, phase-locked loop
相關次數: 點閱:596下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是設計一個10 GHz快速鎖定頻率合成器晶片,此頻率合成器僅使用一個電壓控制振盪器來涵蓋9.2GHz至10.4GHz的頻帶範圍,這個電壓控制振盪器採用互補式交叉耦合架構來獲得低相位雜訊的性能,因此晶片面積能夠被大大的減少。在本論文中使用了一組多係數除頻器電路,藉由改變不同的數位輸入碼能改變通道頻率。藉由妥善的設計系統參數,能使鎖定的時間減少,例如電荷幫浦的電流、電壓控制振盪器的增益與迴路頻寬。

    在本論文中,鎖定時間能夠低於3.7us。而此頻率合成器使用台積電所提供0.18微米互補式金氧半製程以1.8伏特來完成所有晶片與量測。量測結果顯示頻率鎖定於10GHz時,距離主頻1KHz至100KHz的相位雜訊低於-60 dBc/Hz,而距離主頻1MHz處的相位雜訊為-113.4 dBc/Hz晶片面積包含pad為0.56 mm2。總消耗功率為39mW。


    In the thesis, the proposed 10 GHz fast locking frequency synthesizer chip is presented. The proposed frequency synthesizer can cover the frequency range from 9.2 GHz to 10.4 GHz with only using one VCO and the chip area can be greatly reduced. The VCO employs Complementary cross-coupled structure to obtain lower phase noise performance. In this thesis, the multi-modulus divider (MMD) circuit is also used to change the frequency channel by different input digital code. The locking time can be reduced by carefully design system parameters, such as charge pump current, VCO gain and loop bandwidth.

    In this thesis, the locking time is lower than 3.7us. The proposed frequency synthesizer is fabricated in a TSMC 0.18-um CMOS process with 1.8 V supply voltage. The measured results show phase noise is lower than -60 dBc/Hz from 1 kHz to 100 kHz offset and -113.4 dBc/Hz at 1 MHz offset with locked in 10GHz. The chip area of the frequency synthesizer is smaller than 0.56 mm2 including the pads. The power consumption is 39mW from a 1.8V supply.

    List of Figures III List of Tables VI CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Focus and Contributions 2 1.3 Organization of This Thesis 2 CHAPTER 2 The PLL-Based Frequency Synthesizers 5 2.1 Wireless Transceiver 5 2.2 Phase-Locked Loop 6 2.2.1 Integer-N Frequency Synthesizer 7 2.2.2 Fraction-N Frequency Synthesizer 8 2.3 Figures of Merit of a Frequency Synthesizer 9 2.3.1 Jitter 9 2.3.2 Phase Noise 10 2.3.3 Spurs 11 2.4 Building Blocks of Frequency Synthesizer 11 2.4.1 Phase Frequency Detector (PFD) 11 2.4.2 Charge Pump (CP) 14 2.4.3 Loop Filter 14 2.4.4 Voltage-Controlled Oscillator (VCO) 15 2.4.5 Frequency Divider 16 2.5 Loop Filter Design 16 2.5.1 First-Order Loop Filter 16 2.5.2 Second-Order Loop 18 2.5.3 Third-Order Loop 21 2.6 Frequency Synthesizer Paper Survey 22 CHAPTER 3 Voltage-Controlled Oscillator Circuit Design 25 3.1 Introduction 25 3.2 Oscillator Theory 26 3.3 Ring Oscillator 27 3.4 LC-Tank VCO 28 3.4.1 Resonator Theory 28 3.4.2 LC-Tank Architecture 29 3.5 Passive Components in an LC-Tank VCO 30 3.5.1 Resistance 30 3.5.2 Capacitor 31 3.5.3 Varactor 31 3.5.4 Inductor 33 3.5.5 Transformer 35 3.6 Design and Implementation of LC-Tank VCO 36 CHAPTER 4 10 GHz Frequency Synthesizer Chip Design 43 4.1 Introduction 43 4.2 System Behavior Modeling 44 4.3 Circuits Architecture 47 4.3.1 Phase Frequency Detector (PFD) 47 4.3.2 Charge Pump (CP) 50 4.3.3 Loop Filter 52 4.3.4 Voltage-Controlled Oscillator 56 4.3.5 Frequency Divider 56 4.3.5.1 Source-Coupled Logic 57 4.3.5.2 Differential to Single-Ended Circuit 58 4.3.5.3 TSPC Divider 60 4.3.5.4 Multi-Modulus Divider 61 4.4 Frequency Synthesizer Simulation 66 4.5 Summary 69 CHAPTER 5 Chip Measurement Results 71 5.1 RF Chip Layout Considerations 71 5.2 RF Chip Measurement Considerations 72 5.2.1 Chip Floor Plan and PCB Design 72 5.2.2 Measurement Instrument 74 5.2.3 Test Environment Setup 75 5.3 Measurement Results 77 5.4 Performance Summary and Comparison 79 CHAPTER 6 Conclusions and Future Work 81 6.1 Conclusion 81 6.2 Future Work 81 Reference : All project chip design and Measurements 83 Appendix I : All project chip design and Measurements 87 Appendix II : Publication List and Award 95

    [1] Shen-Iuan Liu, “Design and Realization of CMOS RF Frequency Synthesizer” Master Thesis, 2001.
    [2] A.L. Lacaita, S. Levantino and C. Samori, Integrated Frequency Synthesizers for Wireless Systems, Cambridge University Pres, 2007.
    [3] A. Mohammadi, A. Ayatollahi, A. Abrishamifar and A. Beygi, “Frequency Synthesizer Settling Time and Phase Noise Issues For WLAN Transceiver Application in IEEE 802.11n Standard,” International Conference on ICEE '07 pp.1-5, April. 2007.
    [4] Pei-Jiuan Shie, “UWB RF Receiver Front-end Chip Design with On-Chip Transformer Circuit,” Master Thesis, 2008.
    [5] H. de Bellescize, “La réception synchrone”, L’onde électrique, vol. 11, pp.225-240, May 1932.
    [6] Finden, H. J., “The frequency synthesizer”, Journal IEE, Part III, vol. 90, pp.165-80, 1943.
    [7] M. Kozak and I. Kale, “A pipelined noise shaping coder for fractional-N frequency synthesis,” IEEE Trans. Instrum. Meas., vol. 50, pp. 1154–1161, Oct. 2001.
    [8] B. Razavi, RF Microelectronics, Prentice Hall, NY, 1998.
    [9] J. Hancock, “Jitter-Understanding it, Measuring it, Eliminating it Part 3: Causes of Jitter,” High Frequency Electronics, pp.28-44, June 2004.
    [10] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” Proc. Custom IC Conf. Orlando, FL, 2000, pp. 569-572.
    [11] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LCD VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896-909, 2001.
    [12] Ali Hajimiri, and Thomas H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, 1998.
    [13] S. H. Yang, C. H. Lee, and K. R. Cho, “A CMOS Dual Modulus Prescaler Based on a New Charge Sharing Free D-Flip-Flop,” Prec. 14th Annual IEEE International ASIC/SOC Conf., pp.276-280, 2001.
    [14] Ping-Yuan Deng, Jean-Fu Kiang, “A 5-GHz CMOS Frequency Synthesizer With an Injection-Locked Frequency Divider and Differential Switched Capacitors,” IEEE Trans. Circuits Syst. I, vol. 56, no. 2, pp. 320-326, February 2009.
    [15] Sheng-Lyang Jang, Chien-Feng Lee and Jhong-Chen Luo, ”A CMOS LC Injection-Locked Frequency Divider with the Division Ratio of 2 and 3,” Microwave and Optical Technology Lett.,pp. 1263-1267, May 2009.
    [16] F. M. Gardner, “Charge-Pump Phase-Locked Loops,” IEEE Trans. On Communications, vol. 28, pp. 1849-1858, Nov. 1980.
    [17] W. O. Keese, An analysis and performance evaluation of a passive filter design technique for charge pump phase-locked loops, National Semiconductor Application Note, no. 1001, May 1996.
    [18] Wenting Wang and Howard C. Luong, “A 0.8-V 4.9-mW 1.2-GHz CMOS Fractional-N Frequency Synthesizer for UHF RFID Readers,” IEEE Trans. Circuits Syst. I, vol. 55, no. 9, pp. 2505-2513, October 2008.
    [19] Yu-Che Yang and Shey-Shi Lu, “A Quantization Noise Pushing Technique for ΔΣFractional-N Frequency Synthesizers,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 4, pp. 817-825, April 2008.
    [20] J. Savoj and B. Razavi, High-Speed CMOS Circuits for Optical Receivers, Kluwer, 2001.
    [21] B. Razavi, Design of Analog CMOS Integrated Circuits, New York, NY: McGraw Hill, 2000.
    [22] H. Zhang, G. Chen and N. Li, “A 2.4-GHz linear-tuning CMOS LC voltage-controlled oscillator,” Proceedings of the ASP-DAC, vol. 2, pp. 799-802, 2005.
    [23] Adin Kanli´c, “A 3.8 GHz Temperature Compensated CMOS LC-VCO for DECT Applications,” Master’s Thesis 2007.
    [24] A. Hajimiri and T. H. Lee, ”Design issues in CMOS differential LC oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp.717-724, May 1999.
    [25] S. Levantino, et. al., “Frequency Dependence on Bias Current in 5-GHz CMOS VCOs: Impact on Tuning Range and Flicker Noise Upconversion,” IEEE Journal of Solid-State Circuits, vol. 37, no. 8, pp.1003-1011, Aug. 2002.
    [26] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE Journal of Solid State Circuits, vol. 36, no.6, pp.896–909, June 2001.
    [27] M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE Journal of Solid State Circuits, vol. 36, no. 11, pp.1018–1024, Jul. 2001.
    [28] A. Goel, and H. Hashemi, “Frequency Switching in Dual-Resonance Oscillators,” IEEE Journal of Solid State Circuits, vol. 42, no. 3, pp.571-582, Mar. 2007.
    [29] T. H. LEE, The Design of CMOS Radio-Frequency Integrated Circuit Second Edition, Cambridge, pp 136-141, 2004.
    [30] Daniel Kehrer, Design of Monolithic Integrated Lumped Transformers in Silicon-based Technologies up to 20 GHz, Ph.D. Thesis, 2000.
    [31] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp.717-724,May 1999.
    [32] Bunch, R.L. , Raman, S. , “Large-signal analysis of MOS varactors in CMOS -Gm LC VCOs,” IEEE J. Solid-State Circuits, vol. 38, no. 8 pp.1325-1332, Nov. 2003.
    [33] H. C. Luong and G. Leung, Low-Voltage CMOS RF Frequency Synthesizers, Cambridege University Press, 2004.
    [34] S. Kim, K. Lee, Y. Moon, D-K. Jeong, Y. Choi, and H. Kyu Lim, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, no. 5 pp.691-700, May. 1997.
    [35] Ian A. Young, Jeffrey K. Greason, and Keng L. Wong, “A PLL clock generator with 5 to 110 MHz of lock range for microprocessors,” IEEE J. Solid-State Circuits, vol. 27, no. 11 pp.1599-1607, Nov. 1992.
    [36] Rhee, W, “Design of high-performance CMOS charge pumps in phase-locked loops,” IEEE ISCAS 1999, vol. 2, pp.545-548, June. 1999.
    [37] D. Johns and K. Martin, Analog integrated circuit design, Canada: Wiley, 1997.
    [38] Shao-Ku Kao, “Design of A PLL with Fast-Lock and Low Jitter” Master Thesis, 2002.
    [39] S-I. Liu and C-Y. Yaug, Phase-Locked Loop, Tsang Hai Book Publishing Co, 2006.
    [40] W. O. Keese, Application Note 1001, National Semiconductor Co, July 2001.
    [41] B. Razavi, RF Microelectronics, New Jersey: Prentice Hall, 1998.
    [42] Y. H. Kao, RF Phase-Locked Loop Integrated Circuit Design, Tsang Hai Book Publishing Co, 2004.
    [43] S. H. Yang, C. H. Lee, and K. R. Cho, “A CMOS Dual Modulus Prescaler Based on a New Charge Sharing Free D-Flip-Flop,” Prec. 14th Annual IEEE International ASIC/SOC Conf., pp.276-280, 2001.
    [44] B. Chang, J. Park, and W. Kim, “A 1.2 GHz CMOS dual modulus prescaler using new dynamic d-type flip-flops,” IEEE Journal of Solid-State Circuits, vol. 31, no. 5, pp. 749–752, May 1996.
    [45] Vaucher C., Kasperkovitz. D, “A wide-band tuning system for fully integrated satellite receivers,” IEEE Journal of Solid-State Circuits, vol. 33, no. 7, pp. 987–997, July 1998.
    [46] Vaucher C.S. , Ferencic I. , Locher M. , Sedvallson S. , Voegeli U. , Wang Z, “A family of low-power truly modular programmable dividers in standard 0.35-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 35, no. 7, pp. 1039–1045, July 2000.
    [47] Q. Hunag and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-465, Mar. 1996.
    [48] Z. Gu, B. Bartsch, A. Thiede, R. Tao and Z. G. Wang, “Fully integrated 10 GHz CMOS LC VCOs,” European 33rd Microwave Conference 2003, vol. 2, pp.583-586, Dec. 2009.
    [49] L. Perraud, J. L. Bonnot, N. Sornin and C. Pinatel, “Fully integrated 10 GHz CMOS VCO for multi-band WLAN applications,” European Solid-State Circuits Conference 2003, pp.353-356, Sept. 2003.
    [50] T. Y. Choi, H. Lee, L. P. B. Katehi and S. Mohammadi, “A low phase noise 10 GHz VCO in 0.18μm CMOS process,” European Microwave Conference 2005, vol. 3, pp.no, Oct. 2005.
    [51] S. Rong and H. C. Luong, “A 1V 4 GHz-and-10 GHz transformer-based dual-band quadrature VCO in 0.18 μm CMOS,” CICC2007, pp.817-820, Sept. 2007.
    [52] M. T. Hsu and C. T. Chiu, “A low power 10 GHz current reused VCO using negative resistance enhancement technique,” APMC 2009, pp.2276-2279, Dec. 2009.
    [53] N. Pavlovic, J. Gosselin, K. Mistry, D. Leenaerts, “A 10 GHz frequency synthesiser for 802.11a in 0.18 μm CMOS,” Solid-State Circuits Conference 2004, pp.367-370, Sept. 2004.
    [54] A. Ravi, G. Banerjee, R. E. Bishop, B. A. Bloechel, L. R. Carley, K. Soumyanath, “10 GHz, 20 mW, fast locking, adaptive gain PLLs with on-chip frequency calibration for agile frequency synthesis in a 0.18 μm digital CMOS process,” VLSI Circuits 2003, pp. 181-184, June 2003.
    [55] Remco C. H, Cicero S. Vaucher, Domine M. W. Leenaerts, Eric A. M. Klumperink, and Bram Nauta, “A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1862–1872, Nov. 2004.
    [56] Tsung-Hsien Lin and Yu-Jen Lai, “An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS PLL,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340-349, February 2007.
    [57] I. W. Tseng and J. M. Wu, “An 18.7mW 10-GHz Phase-Locked Loop Circuit in 0.13-µm CMOS,” VLSI-DAT ’09, pp. 227-230, April 2009

    無法下載圖示 全文公開日期 2015/01/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE