簡易檢索 / 詳目顯示

研究生: 曹中瀚
Chung-Han Tsao
論文名稱: LED散熱基板之熱模擬分析與基板優化設計
Design Optimization of LED Substrate with Thermal Conduction Simulation
指導教授: 李三良
San-Liang Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
洪儒生
Lu-Sheng Hong
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 發光二極體散熱熱模擬分析奈米碳管矽基板蝕刻凹槽
外文關鍵詞: Thermal simulation, Silicon etching U groove
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主要針對實驗室已開發之奈米碳管整合於矽散熱基板結構做近一步的熱模擬分析及製程步驟之優化改良,並提出利用高熱傳導之陶瓷材料碳化矽(SiC)及離子佈植氬原子的方式,來取代原先基板介電層採用之低熱傳材料一氧化矽(SiO),近而提升基板整體散熱效率之構想,接著設計不同奈米碳管填充率之散熱基板,並實際量測42mil的紅光LED與不同開口率散熱基板黏合後之L-I-V及熱阻變化趨勢。
    模擬成果方面,首先利用CFdesign熱流模擬軟體模擬奈米碳管整合於矽散熱基板的結構,發現基板之介電層若改為理想熱傳導值為400(W/mK)的SiC材料後,其熱阻較原本使用SiO材料之基板降低2成左右。而凹槽開口率越大的基板,因奈米碳管填充率較高的因素,使其熱阻呈現越小的趨勢,當奈米碳管為理想熱傳導值300(W/mK)且凹槽開口率為0.9及凹槽深度為75μm時,熱阻較無凹槽結構之基板降低將近1.5成左右。另外凹槽深度越深的基板,也因奈米碳管填充率較高的因素,使其熱阻呈現越小的趨勢,當凹槽深度達225μm時,整體熱阻較無凹槽結構之散熱基板降低將近3成左右。
    實驗成果方面,實際量測LED元件黏合無凹槽結構散熱基板之L-I-V曲線及熱阻後,發現介電層採用陶瓷材料(SiC)之散熱基板有較好的散熱效果,LED之飽合電流較介電層為SiO之散熱基板多提升80mA左右,成功證明本論文提出基板介電層選用高熱傳導係數材料來提升整體散熱效率之構想。而實際量測LED元件黏合不同凹槽結構散熱基板之L-I-V曲線後,發現當基板凹槽結構越大時,LED之L-I曲線呈現的飽和電流值越小。另外利用快速熱阻量測系統量測LED元件黏合不同凹槽結構散熱基板之熱阻後,發現LED黏合不同凹槽結構散熱基板後其熱阻都較沒黏合基板前小,而當散熱基板凹槽越大時,LED的熱阻改善率就越小,當LED黏合無凹槽結構之基板時,LED之熱阻改善率為63%且飽和電流改善量>400mA,而當LED黏合凹槽開口率為0.9之基板時,LED之熱阻改善率下降為11%且飽和電流改善量降低至100mA左右,造成此現象的主要原因為凹槽內側壁無成長奈米碳管所導致的結果,針對凹槽內側壁無成長奈米碳管之散熱基板結構進行模擬後,發現實際量測LED之L-I-V飽和電流及LED熱阻改善變化趨勢與奈米碳管熱傳導值小於300(W/mK)時之模擬熱阻變化趨勢相似,當凹槽越大則封裝後凹槽內的空氣區域就越多,進而抑制散熱基板的散熱效能。


    This thesis focuses on detailed thermal and process optimization of the proposed vertically-aligned-carbon-nanotube on silicon (VoS) platform. For practical demonstration, a 42-mil high-power light emitting diode (LED) is used as the heating light source and is bonded onto the VoS platform to investigate the variation of the device performance and the thermal resistance (Rs) of the LED chip. The main contribution of this work is to utilize two different approaches, high-thermal-conductive silicon carbide (SiC) and argon ion implantation, as the current isolation layer (CIL) to replace poor-thermal-conductive silicon monoxide (SiO) that we originally used. Different carbon nanotube (CNT) area ratios are also used in the VoS platform to explore the dependence of CNT area ratios to the overall Rs of the VoS submount. For thermal simulation, a commercialized thermal flow design tool CFdesign is used to investigate the Rs in the VoS platform. The result indicates 20% Rs improvement after replacing originally-used SiO dielectric layer with ideal SiC layer (K=400 W/mK) as the CIL. In addition, the Rs decreases as the CNT area ratio of the VoS submount increases. Another 20% improvement in thermal conduction of the VoS submount could be achieved when the CNT area ratio and U-groove depth are 0.9 and 75 m, respectively. Further increase the U-groove depth to 225 m could even improve the Rs down by 30%. For experimental demonstration, high-power LED chips are bonded on planar submounts with different CILs. The resultant L-I-V curves reveal that the use of SiC as the CIL could lead to the increase of the saturation current by 80 mA as compared to the case for SiO. By replacing planar submounts with the VoS ones which have different CNT area ratios, the saturation current of the bonded LEDs decreases as the CNT area ratio increases. Although the bonded LEDs have smaller Rs compared to the bare chips, the use of VoS submount with larger CNT area ratio does not result in better heat dissipation than planar submount. The use of planar submount would lead to 63% reduction in Rs and the increase of > 400 mA in LED saturation current but the case for VoS platform with a CNT area ratio of 0.9 would only lead to 11% reduction in Rs and the increase of around 100 mA in LED saturation current. We attribute the relatively poor thermal performance in VoS platform to the absence of CNT in the sidewall of the U-groove which would lead to the existence of air gaps beneath the LED chips after bonding, thus increases the Rs. The air gap area increases with the CNT area ratio. Simulation results indicate that as the thermal conductivity of CNT is smaller than 300 W/mK, the thermal benefit from the VoS platform will be cancelled by the air gaps.

    摘要 I Abstract II 致謝 III 目錄 VI 表目錄 X 圖目錄 XI 第一章 導論 1 1.1 發光二極體的應用與發展 1 1.2 發光二極體的封裝技術介紹 2 1.3 熱對發光二極體之影響 9 1.4 研究動機 13 1.5 論文架構 13 第二章 發光二極體與奈米碳管之原理及特性 15 2.1發光二極體發光原理 15 2.2發光二極體散熱原理 21 2.2.1熱傳遞型式之介紹 21 2.2.2熱歐姆原理 26 2.3奈米碳管之原理與特性 28 2.3.1 奈米碳管簡介 28 2.3.2 奈米碳管的製作方式 29 2.3.3 奈米碳管的特性 31 第三章 應用奈米碳管於封裝基板之設計與CFdesign熱模擬分析 ...36 3.1 應用奈米碳管於封裝基板之設計架構 36 3.2 CFdesign熱模擬分析 39 3.2.1 模擬軟體相關設定 39 3.2.2 邊界值設定之驗證方法 46 3.2.3 不同CNT Area Ratio之矽基板熱模擬分析 49 3.2.4 不同Depth Ratio之矽基板熱模擬分析 54 3.2.5 模擬結果討論 56 第四章 應用奈米碳管於封裝矽基板之製作 58 4.1 封裝矽基板之光罩及Shadow Mask設計 58 4.2封裝矽基板之製程步驟 60 4.2.1 光阻定義不同凹槽蝕刻窗口 61 4.2.2 不同凹槽蝕刻窗口轉至SiO2層 62 4.2.3 氫氧化鉀蝕刻U型凹槽 63 4.2.4 基板表面電性隔離 64 4.2.5 成長準直性多壁奈米碳管 67 4.2.6 基板表面鍍上金屬電極及晶片切割 68 4.3 發光二極體與封裝矽基板之封裝製程 69 4.3.1 Flip chip覆晶機之封裝製程 69 第五章 量測結果分析與討論 72 5.1 量測架構介紹 72 5.1.1 發光二極體L-I-V量測架構 72 5.1.2 發光二極體熱阻量測架構 73 5.2不同介電層封裝矽基板輔助下之發光二極體L-I-V量測及熱阻量測結果 75 5.3不同凹槽開口率之封裝矽基板輔助下之發光二極體L-I-V量測及熱阻量測結果 84 第六章 結論 89 6.1 成果與結論 89 6.2 未來研究方向 90 參考文獻 92 作者簡介 95

    [1] 田民波,呂輝宗,溫坤禮,白光LED照明技術,五南圖書出版股份有限公司,民國100年。
    [2] http://zh.wikipedia.org/wiki/發光二極管, 維基百科。
    [3] S. Dong, Q. Zhou, M. Wang, X. Jiang,and J. Yang, “ Analysis of thermal spreading resistance in high power LED package and its design optimization,” International Conference on Electronic Packaging Technology & High Density Packaging, 2011
    [4] W. S. Wong, A. B. Wengrow, Y. Cho, A. Salleo, N. J. Quitoriano, N. W. Cheung, and T. Sands, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off,” Journal of Electronic Materials, vol. 28, pp. 1409-1413, 1999.
    [5] http://en.wikipedia.org/wiki/Power_electronic_substrate, 維機百科。
    [6] 周志敏,LED、OLED照明技術與工程應用,電子工業出版社,民國100年。
    [7] 周志敏,大功率LED照明技術設計與應用,電子工業出版社,民國100年。
    [8] 菊地正典,圖解半導體,世茂出版有限公司,民國95年。
    [9] http://www.oledw.com/oled-news/201102/3695.shtml, 中國OLED網。
    [10]http://www.digikey.com/us/en/techzone/lighting/resources/articles/understanding-the-cause-of-fading.html。
    [11] 曾信榮,許千樹,發光二極體,科學發展月刊,451期,民國99年7月。
    [12] 陳隆建,發光二極體之原理與製程,全華科技圖書有限公司,民國95年。
    [13] 陳思潔,應用奈米碳管於發光二極體封裝之基板設計與製作,碩士論文,國立台灣科技大學,民國98年。
    [14] 蔡豐欽,熱傳遞,新科技書局,民國90年。
    [15] 張佑銜,劉正毓,發光二極體的封裝技術,科學發展月刊,435期,民國98年3月。
    [16] S. Lijima, “Helical microtubes of graphitic carbon,” Letters on Nature, vol. 354, pp.56-58, 1991.
    [17] http://www.me.ncu.edu.tw/cjtseng/Lab/main.htm。
    [18] http://ipn2.epfl.ch/CHBU/NTproduction1.htm。
    [19] http://zh.wikipedia.org/wiki/奈米碳管,維機百科。
    [20] 馮榮峰,奈米工程概論,全華圖書股份有限公司,民國98年。
    [21] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical Review Letters, vol. 87, pp. 215502-215505, 2001.
    [22] J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J.E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Applied Physics Letters, vol. 77, pp. 666-668, 2000.
    [23] T. Cheng, X. B. Luo, S. Huang,“Simulation on Thermal Characteristics of LED Chips for Design Optimization[C], ” International Conference on Electronic Packaging Technology & High Density Packaging, pp. 464-467, 2008.
    [24] A. E. Aliev1, M. H. Lima1, E. M. Silverman and R. H. Baughman1,” Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes,” Nanotechnology, 2010.
    [25] http://www.azom.com/default.asp。
    [26]http://140.116.176.21/www/technique/SOP/SOP%20E-beam%201.pdf
    [27] 戴明吉,劉君愷,郭聖良,譚瑞敏,余致廣,蕭志誠,LED 熱阻快速量測系統,熱管理產業通訊,第 11 期。

    無法下載圖示 全文公開日期 2017/10/31 (校內網路)
    全文公開日期 2062/10/31 (校外網路)
    全文公開日期 2062/10/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE