簡易檢索 / 詳目顯示

研究生: 陳韻安
Yun-An Chen
論文名稱: 不同曲率壓電薄膜感測器的力響應之 標準量測及其在柔性夾爪之應用
Standarized Measurements of Force Responses of Pieozoelectric Membrane Sensors with Various Curvatures, and the Application to Soft Gripping
指導教授: 林柏廷
Po-Ting Lin
口試委員: 張敬源
CHING-YUAN CHANG
洪維松
WEI-SONG HUNG
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 106
中文關鍵詞: 3D列印柔性夾爪PVDF石墨烯壓電感測器壓電感測器準靜態標準化
外文關鍵詞: 3D print, soft grippers, PVDF-graphene piezoelectric sensor, quasi-static standardization
相關次數: 點閱:321下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著工業4.0與物聯網的發展,智慧型感測夾爪在市場上的需求性越來越高,本論文開發出一種使用3D列印技術所製成之氣動式柔性夾爪,整體選用熱塑性聚氨酯(TPU)材料所製成,具有一定柔性且充滿氣時又具有一定力度能夠夾取物體且能避免夾傷物體表面與掉落;使用3D列印方式製造,具有修改夾爪設計快速、製造成本低、且不需繁複的製程,效率大幅提高。
本論文除了開發3D列印之柔性夾爪,還搭載上智慧型感測的能力,夾爪上裝置之PVDF-石墨烯薄膜壓電感測器,為聚偏氟乙烯(PVDF)與石墨烯混合所製作,透過石墨烯誘發PVDF自組排列,不須經過極化即具備壓電性,且利用石墨烯本身的高導電性,不須安裝電極即可收集機械能作動後所產生的壓電訊號。
本論文為此新型感測器透過準靜態方法做了一系列標準化實驗,量測在不同曲率下之電響應係數。後續套用於柔性夾爪收集訊號,分析訊號回推夾爪施力,並同時夾取彈簧,與彈簧變形量所推算出來的力進行驗證比對。在未來使用者可根據不同的曲率條件,套用本論文所建立之不同曲率壓電感測器電響應係數模型,得到施力大小。


With the development of Industry 4.0 and the Internet of Things, smart sensing grippers are becoming more and more demanding in the market. This study presented a pneumatic flexible gripper made by 3D printing. It is made of thermoplastic polyurethane (TPU) material, which has a certain degree of flexibility and can be driven pneumatically, and Improve the shortcomings of rigid grippers that easily damage objects. The manufacture of 3D printing modifies the flexible gripper design is fast, the manufacturing cost is low and greatly improved the manufacturing process efficiency.
The 3D printing soft gripper is also equipped with smart sensing capabilities, using a PVDF-graphene film piezoelectric sensor. This piezoelectric sensor is made by mixing polyvinylidene fluoride (PVDF) and graphene. PVDF self-assembly is induced through graphene, which is piezoelectric without polarization. And take advantage of the high conductivity of graphene itself, the piezoelectric signal generated by mechanical energy can be collected without installing electrodes.This study has done a series of quasi-static standardized experiments for PVDF-graphene film piezoelectric sensors. Measure the electrical response coefficient under different curvature's designs. And used the collect signal from the flexible gripper to regression analyze the push back force, at the same time, clamp the spring to measure the force for verification and comparison between two forces.
In the future, depending on different curvature conditions, the user can apply the electrical response coefficient model of the piezoelectric sensor with different curvatures presented in this study, get the magnitude of the force.

摘要 I ABSTRACT II 誌謝 IV 目錄 V 符號索引 VIII 圖表索引 X 第一章、緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文整體架構介紹 3 第二章、文獻回顧 4 2.1 柔性夾爪 4 2.2 柔性感測器 8 2.3 感測器標準化 10 第三章、實驗方法 14 3.1 柔性夾爪 15 3.1.1 驅動方式 15 3.1.2 柔性夾爪設計製作 18 3.2 準靜態標準化實驗 28 3.2.1 壓電感測試片製備方法 31 3.2.2 不同曲率試片設計 33 3.2.3 訊號擷取設備與方法 36 3.3 柔性夾爪套用感測器實驗 39 第四章、實驗結果 42 4.1 感測器標準化實驗結果 42 4.1.1 不同曲率試片比較 43 4.2 套用於柔性夾爪實驗結果 55 4.2.1 平坦接觸實驗結果 56 4.2.2 曲面接觸實驗結果 62 第五章、結論與未來展望 68 5.1 結論 68 5.2 未來展望 69 參考文獻 70 附錄A、不同曲率負重壓電結果 75 附錄B、不同曲率壓電常數結果 80 附錄C、不同曲率曲線擬合結果 85

[1] N. El-Atab et al., "Soft Actuators for Soft Robotic Applications: A Review," Advanced Intelligent Systems, vol. 2, no. 10, 2020.
[2] C. Cao, X. Gao, and A. T. Conn, "A magnetically coupled dielectric elastomer pump for soft robotics," Advanced Materials Technologies, vol. 4, no. 8, 2019.
[3] T. H. M Manti, G Passetti, N D'Elia, "A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping," 2015.
[4] C. Tawk, A. Gillett, M. in het Panhuis, G. M. Spinks, and G. Alici, "A 3D-printed omni-purpose soft gripper," IEEE Transactions on Robotics, vol. 35, no. 5, 2019.
[5] C. Tawk, Y. Gao, R. Mutlu, and G. Alici, "Fully 3D printed monolithic soft gripper with high conformal grasping capability," in 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2019: IEEE.
[6] 林洺樞, "力回饋系統於機器人遠端操控之應用," 碩士, 電機與控制工程系所, 國立交通大學, 新竹市, 2005. [Online]. Available: https://hdl.handle.net/11296/8w98xd
[7] Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez, and E. Adelson, "Cable manipulation with a tactile-reactive gripper," arXiv preprint arXiv:1910.02860, 2019.
[8] M. N. Saadatzi, S. K. Das, I. B. Wijayasinghe, D. O. Popa, and J. R. Baptist, "Precision Grasp Control with a Pneumatic Gripper and a Novel Fingertip Force Sensor," in 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), 20-24 Aug. 2018 2018, doi: 10.1109/COASE.2018.8560540.
[9] J. H. Low et al., "Hybrid tele-manipulation system using a sensorized 3-D-printed soft robotic gripper and a soft fabric-based haptic glove," IEEE Robotics and Automation Letters, vol. 2, no. 2, 2017.
[10] H. Yang, Y. Chen, Y. Sun, and L. Hao, "A novel pneumatic soft sensor for measuring contact force and curvature of a soft gripper," Sensors and Actuators A: Physical, vol. 266, 2017.
[11] M. Xie, M. Zhu, Z. Yang, S. Okada, and S. Kawamura, "Flexible self-powered multifunctional sensor for stiffness-tunable soft robotic gripper by multimaterial 3D printing," Nano Energy, vol. 79, 2021.
[12] R. A. Bilodeau, E. L. White, and R. K. Kramer, "Monolithic fabrication of sensors and actuators in a soft robotic gripper," in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: IEEE.
[13] A. P. Gerratt, N. Sommer, S. P. Lacour, and A. Billard, "Stretchable capacitive tactile skin on humanoid robot fingers—First experiments and results," in 2014 IEEE-RAS International Conference on Humanoid Robots, 2014: IEEE.
[14] H. Cho, H. Lee, Y. Kim, and J. Kim, "Design of an optical soft sensor for measuring fingertip force and contact recognition," International Journal of Control, Automation and Systems, vol. 15, no. 1, 2017.
[15] W. S. Wong and A. Salleo, Flexible electronics: materials and applications. Springer Science & Business Media, 2009.
[16] Z. Wang and S. Hirai, "A 3D printed soft gripper integrated with curvature sensor for studying soft grasping," in 2016 IEEE/SICE International Symposium on System Integration (SII), 2016: IEEE.
[17] 台灣智能感測科技, "Piezo Vibration Sensor – Large 壓電式振動感測器," ed, 2008.
[18] KELLER AG für Druckmesstechnik, "HigH-TemperaTure Oem pressure Transducer," ed, 2016.
[19] R. K. Jain, S. Majumder, B. Ghosh, and S. Saha, "Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper," Journal of Manufacturing Systems, vol. 35, 2015/04/01/ 2015, doi: https://doi.org/10.1016/j.jmsy.2014.12.001.
[20] A. Vinogradov and F. Holloway, "Electro-mechanical properties of the piezoelectric polymer PVDF," Ferroelectrics, vol. 226, no. 1, 1999.
[21] Y. R. Wang, J. M. Zheng, G. Y. Ren, P. H. Zhang, and C. Xu, "A flexible piezoelectric force sensor based on PVDF fabrics," Smart Materials and Structures, vol. 20, no. 4, 2011/03/15 2011, doi: 10.1088/0964-1726/20/4/045009.
[22] S. Gao, X. Wu, H. Ma, J. Robertson, and A. Nathan, "Ultrathin multifunctional graphene-PVDF layers for multidimensional touch interactivity for flexible displays," ACS applied materials & interfaces, vol. 9, no. 22, 2017.
[23] 黃琮翰, "智能壓電薄膜之壓力感測系統開發並應用於沖床模具之壽命評估," 碩士, 機械工程系機電整合碩士班, 國立臺北科技大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/agn489
[24] 莊承修, "具石墨烯壓電感測器的氣動柔性夾爪設計," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/w83hg5
[25] K. F. Lei, K.-F. Lee, and M.-Y. Lee, "Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement," Microelectronic Engineering, vol. 99, 2012/11/01/ 2012, doi: https://doi.org/10.1016/j.mee.2012.06.005.
[26] A. Nag, S. Feng, S. C. Mukhopadhyay, J. Kosel, and D. Inglis, "3D printed mould-based graphite/PDMS sensor for low-force applications," Sensors and Actuators A: Physical, vol. 280, 2018/09/01/ 2018, doi: https://doi.org/10.1016/j.sna.2018.08.028.
[27] 馮端, "固体物理学大辭典," ed: 北京: 高等教育出版社, 1995.
[28] 李恒德, "現代材料科学與工程辭典," ed: 濟南: 山東科学技術出版社, 2001.
[29] J. Fialka and P. Beneš, "Comparison of methods of piezoelectric coefficient measurement," in 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, 2012: IEEE.
[30] K. Instruments, "Low level measurements handbook: precision DC current, voltage and resistance measurements," Keithley, 6th ed. Auflage, 2004.
[31] 聚英電子工業互聯網方案提供商, "6路模拟量输入,6路模拟量输出模块 DAM-AIAO," ed, 2007.
[32] 高鹿興業有限公司, "壓力比例閥 Proportional Pressure Regulator " 2020, 09/10, 1980. [Online]. Available: https://www.genndih.com/upload_files/download/pdf/QKL-B1T-B2T-B3-1-B3-1A(8bar).pdf
[33] D. Rus and M. T. Tolley, "Design, fabrication and control of soft robots," Nature, vol. 521, no. 7553, 2015.
[34] Treed Filaments, "TPU Flexible 3D Printing Filament," 2007. [Online]. Available: https://treedfilaments.com/3d-printing-filaments/flexmark-flexible-tpu/.
[35] Zhejiang Flashforge 3D Technology, "product-detail-Creator Pro," 2011. [Online]. Available: https://www.flashforge.com/product-detail/4
[36] Diabase Engineering, "the FLEXION extruder," 2019. [Online]. Available: https://www.diabasemachines.com/flexion
[37] 楊凱安, "拉線驅動柔性機構的製程與運動分析," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/d3se4e
[38] I. R. Porteous, Geometric differentiation: for the intelligence of curves and surfaces. Cambridge University Press, 2001.
[39] C. Clouchoux et al., "Quantitative in vivo MRI measurement of cortical development in the fetus," Brain Structure and Function, vol. 217, no. 1, 2012.
[40] TE CONNECTIVITY (TE), "PIEZO FILM LAB PRE-AMPLIFIER," 2017. [Online]. Available: https://www.te.com/usa-en/product-CAT-PFS0015.html
[41] National Instruments, "NI 9234 Datasheet," 2015. [Online]. Available: https://www.ni.com/pdf/manuals/374238a_02.pdf
[42] National Instruments, "NI cDAQ-9171 Specifications," 2013. [Online]. Available: https://www.ni.com/pdf/manuals/374037b.pdf

無法下載圖示 全文公開日期 2024/08/26 (校內網路)
全文公開日期 2026/08/26 (校外網路)
全文公開日期 2026/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE