簡易檢索 / 詳目顯示

研究生: 蕭淵隆
Yuan-lung Hsiao
論文名稱: 高效益光纖放大器之研製
Investigation of High-Efficiency Optical Fiber Amplifiers
指導教授: 廖顯奎
Shien-Kuei Liaw 
口試委員: 黃振發
Jen-Fa Huang
單秋成
Chow-Shing Shin
賴柏洲
Po-Chou Lai
劉政光
Cheng-Kuang Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 73
中文關鍵詞:  光纖放大器高效益 來回放大兩次
外文關鍵詞:  optical fiber amplifiers, high efficiency,  double pass
相關次數: 點閱:260下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製高增益、低雜訊指數、寬頻帶的光纖放大器,內容分為三個部份:第一部份為高效益之拉曼光纖放大器(以L-band為例),在架構末端設置反射迴路(光循環器),使訊號與泵激光源經來回兩次放大進而改善效率,本論文建議架構的泵激光源使用效率比傳統架構高69 %,並且具有最高的增益與最低的雜訊指數,另一方面也進行增益光纖(色散補償光纖)的模擬計算,得知其長度在3.6 km時有最大的輸出功率,而在4 km時有最低的雜訊指數。
    第二部份為C+L band摻鉺光纖放大器架構的探討,在輸入訊號為-10 dBm的條件下,利用殘餘功率回收方式改善增益與雜訊指數,主要討論有兩種架構,一為串聯式架構,末端放置光循環器為反射器時,未經補償之增益為22.55 dB,雜訊指數為5.33 dB,補償後增益改善1.76 dB,雜訊指數改善0.39 dB;末端反射器為光纖鏡面時,未補償增益為23.01 dB,雜訊指數為5.16 dB,補償後增益改善1.64 dB,雜訊指數改善0.31 dB。另一為並聯式架構,以光循環器為反射器時,未補償增益為22.19 dB,雜訊指數為5.2 dB,補償後增益改善1.51 dB,雜訊指數改善0.35 dB;以光纖鏡面為反射器的情況,未補償增益為22.83 dB,雜訊指數為5.16 dB,補償後增益改善1.46 dB,雜訊指數改善0.44 dB。
    第三部份為混成式C/L band摻鉺/拉曼光纖放大器,架構主要利用單顆1480 nm高功率雷射經比率耦合器適當分配供給之功率,使C+L band之增益平坦化,能更有效地利用泵激雷射的功率以降低模組成本。末端放置光循環器時,增益為19.54 dB,雜訊指數為5.11 dB;在末端放置光纖鏡面,增益為17.51 dB,雜訊指數為5.04 dB。


    The thesis mainly investigates on the high gain, low noise figure and wideband optical fiber amplifiers. The contents are divided into three parts; the first part focuses on high-efficiency Raman fiber amplifier, taking the L-band RFA as an example. By setting up reflection return route (optical circulator) on the structure end, pumping efficiency is improved by double-pass the gain medium. The efficiency of the pump laser used in the structure is 69 % higher than that of the conventional prior work. It also achieves lower noise figure. We also design and simulate the optimum length for the usage of dispersion compensation fiber (DCF) to obtain the greatest output power as 3.6 km and the lowest noise figure as 4 km of DCF.
    In the second part, we discuss the improved configuration of C+L band erbium doped fiber amplifiers using recycling pump power. All measurements are based on -10 dBm input power with tunable wavelength. There are two kinds of configurations: The first one is the cascaded construction. By setting up an optical circulator as a reflector at the end point to reuse the residual pumping power, the gain and noise figure are 1.76 dB and 0.39 dB improved.
    When a fiber mirror is used to replace the optical circulator, the gain and noise figure are 1.64 dB and 0.31 dB improved, respectively, compared to the convention one. Another configuration is the parallel construction using a circulator device as the reflector, the gain and noise figure are 1.51 dB and 0.35 dB improved, respectively, after reusing the residual pumping power. When a fiber mirror is used to replace the optical circulator, the gain and noise figure are 1.46 dB and 0.44 dB improved, respectively.
    In the third part, we fabricate a hybrid fiber amplifier using C-band EDFA and L-band RFA. The concept is to use a single pump laser @1480 nm to supply appropriate power ratio to C and L bands individually. It could gain flattened the C+L band spectra. For the pump laser recycling issue, the gain and noise figure are 19.54 dB and 5.11 dB, respectively, as using an optical circulator. While they are 17.51 dB and 5.04 dB, respectively, as using a fiber mirror.

    摘要 Abstract 誌謝 目錄 圖目錄 第一章 緒論 1-1前言 1-2研究動機 1-3論文架構 第二章 光纖放大器之文獻探討 2-1摻鉺光纖放大器 2-1-1放大原理 2-1-2參數描述 2-2 拉曼光纖放大器 2-2-1放大原理 2-2-2參數描述 2-3 C+L band光纖放大器 2-3-1 C+L band摻鉺光纖放大器 2-3-2 C+L band摻鉺/拉曼光纖放大器 第三章 高效益之L-band拉曼光纖放大器 3-1 L-band RFA實驗 3-2 L-band RFA模擬 第四章 高效益之C+L band摻鉺光纖放大器 4-1 串聯式EDFA 4-1-1 光循環器式EDFA 4-1-2 鏡面式EDFA 4-2 並聯式EDFA 4-2-1 光循環式EDFA 4-2-2 鏡面式EDFA 第五章 高效益混成式摻鉺/拉曼光纖放大器 5-1 並聯式EDFA/RFA 5-2 光循環器式EDFA/RFA 5-3 鏡面式EDFA/RFA 5-4 三種EDFA/RFA架構比較 第六章 結論與未來展望 6-1 結論 6-2 未來展望 參考文獻 碩士班期間研究成果

    [1] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-Doped Fiber Amplifiers, Fundamentals and Technology”, Academic Press, 1999.
    [2] 黃政凱, “前瞻型光纖放大器之研製”, 台灣科技大學碩士論文, 2005.
    [3] G. P. Agrawal, Fiber-Optical Communication System, John Wiley & Sons, Inc., New York, 1997.
    [4] D. Derickson, Fiber Optical Test and Measurement, Prentice Hall PTR, New Jersey, 1998.
    [5] L. Keigo, “Elements of photonics volume II”, Wiley-Interscience, 2002.
    [6] 廖協虹, “(C+L)-band 摻鉺光纖放大器的研製及應用”, 台灣科技大學碩士論文, 2004.
    [7] R. D. Muro, S. J. Wilson, N. E. Jolley, B. S. Farley, A. Robinson, and J. Mun, “Measurement of the quantum efficiency of long wavelength EDFAs with and without an idler signal”, OFC 1999, vol. 1, pp. 419- 420, 1999.
    [8] S. Namiki and Y. Emori, “Ultrabroad-Band Raman Amplifiers Pumped and Gain-Equalized by Wavelength-Division-Multiplexed High-Power Laser Laser Diodes”, IEEE J. Quantum Electronics, vol. 7, pp. 3-14, 2001.
    [9] 陳建村,“光纖拉曼放大系統中OTDR即時監控技術之研究”, 國立中山大學碩士論文, 2003.
    [10] E. Hecht, “Optics”, Addison Wesley, 4thedition, pp. 604-605, 2002.
    [11] K. Toge, K. Hogari, and T. Horiguchi, “Measurement of Raman gain distribution in optical fibers”, IEEE Photon. Technol. Lett., vol. 14, pp. 974-976, 2002.
    [12] S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Gain saturation in silica-fibre Raman amplifier”, Electron. Lett., vol. 35, pp. 13-21, 1999.
    [13] Y. Aoki, “Properties of fiber Raman amplifiers and their applicability to Digital optical communication systems”, Journal of Lightwave Thchnol., vol. 6, pp. 1225-1239, 1998.
    [14] S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Gain and saturation characteristics of dual-wavelength-pumped silica-fibre Raman amplifier”, Electron. Lett., vol. 35, pp. 1178-1179, 1999.
    [15] M. H. Eiselt, “Raman gain saturation and the need for dynamic gain control”, IEEE/LEOS, pp. 43-44, 2002.
    [16] R. S. Tucker and D. M. Baney, “Optical Noise Figure: Theory and Measurements”, Eur. Conf. Optical Communication, vol. 3, pp. 1176-1184, 2000.
    [17] 王俊容, “光纖光柵與光循環器組成之光纖雷射:研製與應用”, 台灣科技大學碩士論文, 2005.
    [18] A. A. Rieznik, W. A. Arellano, G. S. Wiederhecker, T. P. M. Alegre, and H. L. Fragnito, “EDFAs gain and noise figure dependence on the fiber length: comparison between L and C Bands”, IMOC 2003, vol. 1, pp. 115-119, 2003.
    [19] B. H. Choi, H. H. Park, M. Chu, and S. K. Kim, “High-gain coefficient long-wavelength-Band erbium-doped fiber amplifier using 1530 nm Band pump”, IEEE Photon. Technol. Lett., vol. 13, pp. 109-111, 2001.
    [20] V. Curri, “System Advantages of Raman Amplifiers”, Proc. NFOEC2000, paper B1.1. 2000.
    [21] S. Wang and C. Fan, “Distributed fiber Raman amplifiers: analytical expression of noise characteristics under complex conditions”, Optics Communications, vol. 198, pp. 65-70, 2001.
    [22] Raman amplification design in WDM systems,www.iec.org.
    [23] G. P. Agrawal, “Nonlinear Fiber Optics”, second edition, academic press, New York, 1995.
    [24] B. Bristiel, P. Gallion, Y. Jaouen, and E. Pincemin, “Intrinsic noise figure derivation for fiber Raman amplifiers from equivalent noise figure measurement”, Lightwave Technologies in Instrumentation and Measurement Conference, pp. 135-140, 2004.
    [25] X. Liu and B. Lee, “A fast and stable method for Raman amplifier propagation equations”, Opt. Express 11, pp. 2163-2176, 2003.
    [26] S. W. Harun, P. Poopalan, and H. Ahmad, “Gain enhancement in L-band EDFA through a double-pass technique”, Photonics Technology Letters, IEEE, vol. 14, pp. 296-297, 2002.
    [27] H. Ahmad and S. W. Harun, “Double pass L-band EDFA with an improved gain coefficient”, APCC 2003, vol. 1, pp. 31-33, 2003.
    [28] M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “BroadBand and gain-flattened amplifier composed of a 1.55 μm-Band and a 1.58 μm-Band Er3+-doped fibre amplifier in a parallel configuration”, Electron Lett., vol. 33, pp. 710-711, 1997.
    [29] S. Hwang, K. W. Song, K. U. Song, S. H. Park, J. Nilsson, and K. Cho, “Comparative high power conversion efficiency of C-plus L-band EDFA”, Electronics Letters, vol. 37, pp. 1539-1541, 2001.
    [30] S. T. Hwang, K. W. Song, S. T. Kim, Y. H. Joo, G. W. Lee, and K. Cho, “The novel structure of C-plus L-band erbium-doped fiber amplifier”, ECOC‘01, vol. 3, pp. 400-401, 2001.
    [31] Y. H. Lu and S. Chi, “Two-stage L Band EDFA applying C/L Band wavelength-division multiplexer with the counterpropagating partial gain-clamping”, IEEE Photon. Technol. Lett., vol. 15, pp. 1710-1712, 2003.
    [32] S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, “Broad-band erbium-doped fiber amplifier with double-pass configuration”, Photonics Technology Letters, IEEE, vol. 13, pp. 1289-1291, 2001.
    [33] 洪福春, “寬頻高增益之拉曼光纖放大器理論與實驗研究”, 台灣科技大學碩士論文, 2003.
    [34] S. K. Liaw, F. C. Hung, Y. F. Chiang, C. M. Hung, C. F. Chen, and T. F. Wu, “Investigation of bidirectional pump, power-equalized Raman fiber amplifier with 24 dB Gain”, SPIE Proceeding, vol. 4950, pp. 508-516, 2002.
    [35] 洪智明, “分波多工系統用之兩種光纖放大器研製”, 台灣科技大學碩士論文, 2002.
    [36] S. K. Liaw, Y. K. Chen, H. Y. Yang, C. L. Tzeng, and J. W. Liaw, “Passive gain equalization of erbium-doped fiber amplifier using samarium-doped fiber for multiwavelength transmission”, IEEE LEOS’96, pp. 4-5, 1996.
    [37] J. Lee, U. C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for a L-band EDFA with a secondary pumping effect in the unpumped EDF section”, IEEE Photon. Technol. Lett., vol. 11, pp. 42-44, 1999.
    [38] Y. Zhang, X. Liu, J. Peng, X. Feng, and W. Zhang, “Wavelength and power dependence of injected C-band laser on pump conversion efficiency of L-band EDFA”, IEEE Photon. Technol. Lett., vol. 14, pp. 290-293, 2002.
    [39] M. karasek, M. Menif, and A. Bellemare, “Design of wideband hybrid amplifiers for local area networks”, IEE Optoelectron, vol. 148, 2001.
    [40] J. H. Lee, Y. M. Chang, Y. G. Han, S. H. Kim, H. Chung, and S. B. Lee, “Performance comparison of various configurations of single-pump dispersion-compensating Raman/EDFA hybrid amplifiers”, Photonics Technology Letters, IEEE, vol. 17, pp. 765-767, 2005.

    QR CODE