簡易檢索 / 詳目顯示

研究生: 游文德
Darwin Kurniawan
論文名稱: 微電漿合成石墨烯量子點及環境與生醫應用
Microplasma Synthesis of Graphene Quantum Dots for Environmental and Biomedical Applications
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 江偉宏
Wei-Hung Chiang
邱昱誠
Yu-Cheng Chiu
蕭偉文
Wesley Hsiao
龔仲偉
Chung-Wei Kung
郭霽慶
Chi-Ching Kuo
Kostya (Ken) Ostrikov
Kostya (Ken) Ostrikov
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 151
中文關鍵詞: 微電漿發射可調氮摻雜石墨烯量子點納米傳感器納米溫度計複合材料水淨化
外文關鍵詞: microplasmas, emission-tunable, nitrogen-doped graphene quantum dots, nanosensors, nanothermometers, composites, water purifications
相關次數: 點閱:299下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

具有可調控發射特性的氮摻雜石墨烯量子點 (NGQD) 是用於研究和應用的有用材料。然而,從生物質前體生產具有明確納米結構的 NGQD 的規模化和可持續生產仍然難以捉摸。此處,我們報告了在環境條件下使用大氣常壓微電漿輔助可調電子軌域NGQD合成及應用於生物分子、金屬離子、溫度和 pH 值的多功能感測。原位光學發射和紫外-可見吸收光譜測量表明,等離子體誘導的羥基自由基和溶劑化電子定義了 NGQD 的 N 摻雜劑構型和表面官能基,從而產生了發射可調的 NGQD。只在一小時內,單個微電漿可以產生穩定的膠體 NGQD 分散體,濃度為 100 μg/mL,可用至少 100 次 PL 感測,並且該過程具有可擴展性。
有效和精確地感測癌症和神經遞質生物標誌物,包括葉酸 (FA)、多巴胺 (DA) 和腎上腺素 (EP),對於癌症和神經系統疾病的早期檢測和診斷以及新藥的開發至關重要。通過調節 pH 值,FA 的選擇性感測範圍為 0.8 – 80 µM,DA 和 EP 的選擇性感測範圍為 0.4 – 100 µM,FA 的感測限 (LoD) 非常低,分別為 81.7、57.8 和 16.7 nM ,DA 和 EP,分別。發射可調的 NGQD 也可用作多功能納米傳感器,用於選擇性 Fe3+、Cu2+ 和 Hg2+ 感測,顯示出寬線性感測範圍 (0.5 – 300 µM) 和 47.9 nM 的 Hg2+ 低 LoD 和 10 – 80 °C 的靈敏溫度感測。
另一方面,使用活性納米材料的 pH 傳感在從化學反應到生物化學、生物醫學和環境安全的許多領域,特別是在納米尺度上都有前景。然而,使用穩定、生物相容性和成本效益高的材料實現納米技術增強的快速、靈敏和定量 pH 感測仍然具有挑戰性。先進的光譜測量表明,官能調整的 NGQD 具有豐富的 -OH 官能團和隨著 pH 值的變化而穩定且大的斯托克斯位移,可以實現快速、無標記和離子穩定的 pH 傳感,傳感範圍從 pH 1.8 到13.6。 pH傳感的潛在機制與NGQD的-OH基團的質子化/去質子化有關,導致最大的pH依賴性發光峰位移以及電子軌域變寬或變窄。
此外,我們研究的擴展涉及具有受控結構和性能的多功能金屬有機複合材料,這些複合材料對智能光電、藥物輸送、癌症治療、清潔能源和環境應用具有吸引力。在這裡,我們在環境條件下使用反應性非熱微電漿開發了具有均勻分散的 NGQD 和金納米粒子 (AuNP) 的輕質多孔金屬-石墨烯複合材料。 NGQDs 和 AuNPs 的協同作用加速了合成過程中的聚合物交聯,並確保了同時監測和淨化水的必要性能,包括用於重金屬離子PL感測,以及有機污染物的高吸附容量和快速催化降解。具有可調孔隙率和自愈能力的大面積複合材料可以通過快速且可擴展的電漿工藝製造,避免有毒化學品和高溫。該複合材料在 0.13 mM 4-硝基苯酚濃度下在 60 分鐘內實現 120 g g−1 水淨化,每天產生 2880 L kg−1 淡水。
總體而言,我們的研究結果證明了具有可控光學特性的 NGQD 的微電漿納米工程的可能性,以及從可再生生物資源中可持續和可擴展地合成石墨烯納米材料的一步。我們研究的擴展工作為新興應用的高性能石墨烯-金屬複合材料的設計和生產提供了新的見解。


Nitrogen-doped graphene quantum dots (NGQDs) with controlled emission properties are useful materials for fundamental research and applications. However, the scalable and sustainable production of NGQDs with defined nanostructures from biomass precursors remains elusive. Here we report a rational design of band structure engineering of colloidal NGQDs under ambient conditions using atmospheric-pressure microplasmas usable as the multifunctional nanosensors for biomolecules, metal ions, temperatures, and pH value. In situ optical emission and UV-Vis absorbance spectroscopy measurement reveals that the plasma-induced hydroxyl radicals and solvated electrons define the N-dopant configuration and surface functionalization of NGQDs, leading to emission-tunable NGQDs. In just one hour, a single microplasma jet can produce a stable colloidal NGQD dispersion with 100 μg/mL concentration lasting for at least 100 PL detections, and the process is scalable.
The effective and precise detection of cancer and neurotransmitter biomarkers including folic acid (FA), dopamine (DA) and epinephrine (EP) are essential for early detection and diagnosis of cancer and neurological disorders and for the development of new drugs. By regulating the pH, the selective detection is achieved in broad ranges from 0.8 – 80 µM for FA and 0.4 – 100 µM for both DA and EP with the very low limits of detections (LoDs) of 81.7, 57.8, and 16.7 nM for FA, DA and EP, respectively. The emission-tunable NGQDs are also applicable as multifunctional nanosensors for selective Fe3+, Cu2+, and Hg2+ detection revealing broad linear detection range (0.5 – 300 µM) and low LoD of 47.9 nM for Hg2+ and sensitive temperature detection from 10 – 80 °C.
On the other hand, pH sensing using active nanomaterials is promising in many fields ranging from chemical reactions to biochemistry, biomedicine, and environmental safety especially in nanoscale. However, it is still challenging to achieve nanotechnology-enhanced rapid, sensitive, and quantitative pH detection with stable, biocompatible and cost-effective materials. Advanced spectroscopy measurements reveal that functionality-tuned NGQDs with enriched –OH functional groups and stable and large Stokes shift along the variations of pH value can achieve rapid, label-free, and ionic-stable pH sensing with a wide sensing range from pH 1.8 to 13.6. The underlying mechanism of pH sensing is related to the protonation/deprotonation of –OH group of NGQDs, leading to the maximum pH-dependent luminescence peak shift along with the bandgap broadening or narrowing.
Furthermore, the extension of our study involves multifunctional metal-organic composites with controlled structures and properties which are attractive for smart optoelectronic, drug delivery, cancer therapy, clean energy, and environmental applications. Here we develop lightweight, porous metal-graphene composites with uniformly dispersed NGQD and gold nanoparticles (AuNP) using reactive non-thermal microplasmas under ambient conditions. Synergy of NGQDs and AuNPs accelerates the polymer crosslinking during synthesis and ensures the requisite properties for simultaneous water monitoring and purification including reliable PL for heavy metal detection, as well as high adsorption capacity and fast catalytic degradation of organic pollutants. Large-area hierarchical composites with tunable porosity and self-healing ability can be fabricated by the fast and scalable plasma process avoiding toxic chemicals and high temperatures. The composite achieves 120 g g−1 water purification within 60 min at 0.13 mM 4-nitrophenol concentration and produces 2880 L kg−1 freshwater per day.
Overall, our work demonstrates the possibility of the plasma-enabled nanoengineering of NGQDs with controlled optical properties and a step towards sustainable and scalable synthesis of graphene nanomaterials from renewable bioresources. The extension work of our study provides new insights into design and production of high-performance graphene-metal composites for emerging applications.

Abstract i 摘要 iii Acknowledgement v Publications vi Table of Contents viii Abbreviations xii List of Figures xiii List of Tables xxiv Introduction xxvi Chapter I – Literature Review 1 I.1. Graphene Quantum Dots (GQDs) 1 I.1.1. Synthesis method 2 I.1.1.1. Top-down approach 3 I.1.1.2. Bottom-up approach 4 I.1.2. GQDs as PL-based nanosensors 6 I.1.2.1. PL-based sensing mechanisms 7 I.1.2.2. GQDs for biosensing 9 I.1.2.3. GQDs for heavy metal ion sensing 10 I.2. Microplasma 12 Chapter II – Experimental 14 II.1. Materials and Chemicals 14 II.2. Instrumentations 15 Chapter III – Microplasma-Enabled Colloidal Nitrogen-Doped Graphene Quantum Dots for Ultrasensitive and Selective Detection of Cancer and Neurotransmitter Biomarkers 17 III.1. Introduction 17 III.2. Experimental Section 20 III.2.1. NGQDs synthesis and purification 20 III.2.2. Biomarker selectivity test 21 III.2.3. Sensing of FA, DA, and EP 22 III.3. Results and Discussion 22 III.3.1. Effect of plasma discharge current and reaction time on NGQDs synthesis 22 III.3.2. Characterizations of NGQDs 24 III.3.3. PL-based biomarker sensing using NGQDs. 28 III.3.4. Control factors and sensing mechanisms. 37 III.4. Conclusions 45 Chapter IV – Microplasma-Nanoengineering of Emission Tunable Colloidal Nitrogen-Doped Graphene Quantum Dots as Smart Environmental-Responsive Nanosensors and Nanothermometers 46 IV.1. Introduction 46 IV.2. Experimental Section 50 IV.2.1. NGQDs synthesis and purification 50 IV.2.2. In situ study 50 IV.2.3. Metal ion sensing 51 IV.2.4. Temperature sensing 51 IV.3. Results and Discussion 51 IV.3.1. Microplasma synthesis of emission-tunable NGQDs 51 IV.3.2. TEM, XPS, and Raman characterizations of the synthesized NGQDs 54 IV.3.3. In situ OES and absorbance spectroscopy measurement of the plasma synthesis 60 IV.3.4. Selective metal ion sensing 65 IV.3.5. Temperature sensing 71 IV.4. Conclusions 73 Chapter V – Microplasma Band Structure Engineering in Graphene Quantum Dots for Sensitive and Wide-Range pH Sensing 75 V.1. Introduction 75 V.2. Experimental Section 78 V.2.1. Syntheses of NGQDs 78 V.2.2. Post-treatment process of the synthesized NGQDs 78 V.2.3. pH sensing 78 V.3. Results and Discussion 79 V.3.1. Synthesis and characterizations of NGQDs 79 V.3.2. Functionalization effect of NGQDs for pH sensing 90 V.3.3. pH sensing mechanism 96 V.4. Conclusions 98 Chapter VI – Plasma-Bioresource-Derived Multifunctional Porous NGQD/AuNP Nanocomposites for Water Monitoring and Purification 99 VI.1. Introduction 99 VI.2. Experimental Section 102 VI.2.1. Synthesis of NGQD/AuNP composites 102 VI.2.2. Purification of NGQDs 103 VI.2.3. Dye adsorption with NGQD/AuNP composites 103 VI.2.4. Catalytic degradation of 4-NP with NGQD/AuNP composites 104 VI.2.5. Metal ion detection using NGQD composites 104 VI.2.6. Metal ion detection using NGQD solution 104 VI.3. Results and Discussion 105 VI.3.1. Plasma synthesis of NGQD/AuNP composites 105 VI.3.2. Multifunctional water monitoring and purification of NGQD/AuNP composites 114 VI.3.3. Cr(VI) sensing with NGQD solution 120 VI.4. Conclusions 123 Chapter VII – Summary, Perspectives, and Future Works 125 VII.1. Summary 125 VII.2. Perspectives 125 VII.3. Future works 126 References 129

1. Tian, P.; Tang, L.; Teng, K. S.; Lau, S. P., Graphene Quantum Dots from Chemistry to Applications. Mater. Today Chem. 2018, 10, 221-258.
2. Xu, Q.; Zhou, Q.; Hua, Z.; Xue, Q.; Zhang, C.; Wang, X.; Pan, D.; Xiao, M., Single-Particle Spectroscopic Measurements of Fluorescent Graphene Quantum Dots. ACS Nano 2013, 7 (12), 10654–10661.
3. Kim, S.; Hwang, S. W.; Kim, M.-K.; Shin, D. Y.; Shin, D. H.; Kim, C. O.; Yang, S. B.; Park, J. H.; Hwang, E.; Choi, S.-H.; Ko, G.; Sim, S.; Sone, C.; Choi, H. J.; Bae, S.; Hong, B. Y., Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots: Interplay between Size and Shape. ACS Nano 2012, 6 (9), 8203–8208
4. Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S., Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano 2013, 7 (2), 1239–1245.
5. Dai, Y.; Long, H.; Wang, X.; Wang, Y.; Gu, Q.; Jiang, W.; Wang, Y.; Li, C.; Zeng, T. H.; Sun, Y.; Zeng, J., Versatile Graphene Quantum Dots with Tunable Nitrogen Doping. Part. Part. Syst. Charact. 2014, 31 (5), 597-604.
6. Du, Y.; Guo, S., Chemically Doped Fluorescent Carbon and Graphene Quantum Dots for Bioimaging, Sensor, Catalytic and Photoelectronic Applications. Nanoscale 2016, 8 (5), 2532-2543.
7. Pan, D.; Zhang, J.; Li, Z.; Wu, M., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater. 2010, 22 (6), 734-738.
8. Qu, D.; Zheng, M.; Li, J.; Xie, Z.; Sun, Z., Tailoring Color Emissions from N-Doped Graphene Quantum Dots for Bioimaging Applications. Light Sci. Appl. 2015, 4 (12), e364-e364.
9. Lu, H.; Li, W.; Dong, H.; Wei, M., Graphene Quantum Dots for Optical Bioimaging. Small 2019, 15 (36), e1902136.
10. Ju, J.; Chen, W., Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for Sensitive, Label-Free Detection of Fe (III) in Aqueous Media. Biosens. Bioelectron. 2014, 58, 219-225.
11. Kurniawan, D.; Jhang, R.-C.; Ostrikov, K. K.; Chiang, W.-H., Microplasma-Tunable Graphene Quantum Dots for Ultrasensitive and Selective Detection of Cancer and Neurotransmitter Biomarkers. ACS Appl. Mater. Interfaces 2021, 13 (29), 34572-34583.
12. Khodadadei, F.; Safarian, S.; Ghanbari, N., Methotrexate-Loaded Nitrogen-Doped Graphene Quantum Dots Nanocarriers as an Efficient Anticancer Drug Delivery System. Mater. Sci. Eng. C 2017, 79, 280-285.
13. Yan, Y.; Chen, J.; Li, N.; Tian, J.; Li, K.; Jiang, J.; Liu, J.; Tian, Q.; Chen, P., Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO2 Reduction. ACS Nano 2018, 12 (4), 3523-3532.
14. Wu, Y.; Zhang, H.; Pan, A.; Wang, Q.; Zhang, Y.; Zhou, G.; He, L., White-Light-Emitting Melamine-Formaldehyde Microspheres through Polymer-Mediated Aggregation and Encapsulation of Graphene Quantum Dots. Adv. Sci. 2019, 6 (2), 1801432.
15. Yan, Z.-L.; Liang, F.-C.; Yeh, C.-Y.; Kurniawan, D.; Benas, J.-S.; Chen, W.-C.; Cho, C. J.; Chiang, W.-H.; Jeng, R.-J.; Kuo, C.-C., Optimization of the Carrier Recombination and Transmission Properties in Perovskite LEDs by Doping Poly (4-vinylpyridine) and Graphene Quantum Dots Made of Chitin. Chem. Eng. J. 2022, 444, 136518.
16. Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H., Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Adv. Funct. Mater. 2015, 25 (31), 4929-4947.
17. Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z.; Fan, L.; Yang, S., Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes. Adv. Mater. 2017, 29 (3), 1604436.
18. Ye, R.; Xiang, C.; Lin, J.; Peng, Z.; Huang, K.; Yan, Z.; Cook, N. P.; Samuel, E. L.; Hwang, C.-C.; Ruan, G.; Ceriotti, G.; Raji, A. R.; Marti, A. A.; Tour, J. M., Coal as an Abundant Source of Graphene Quantum Dots. Nat. Commun. 2013, 4, 2943.
19. He, M.; Guo, X.; Huang, J.; Shen, H.; Zeng, Q.; Wang, L., Mass Production of Tunable Multicolor Graphene Quantum Dots from an Energy Resource of Coke By a One-Step Electrochemical Exfoliation. Carbon 2018, 140, 508-520.
20. Shin, Y.; Park, J.; Hyun, D.; Yang, J.; Lee, J.-H.; Kim, J.-H.; Lee, H., Acid-Free and Oxone Oxidant-Assisted Solvothermal Synthesis of Graphene Quantum Dots Using Various Natural Carbon Materials as Resources. Nanoscale 2015, 7 (13), 5633-5637.
21. Zhang, Y.; Li, K.; Ren, S.; Dang, Y.; Liu, G.; Zhang, R.; Zhang, K.; Long, X.; Jia, K., Coal-Derived Graphene Quantum Dots Produced by Ultrasonic Physical Tailoring and Their Capacity for Cu(II) Detection. ACS Sustainable Chem. Eng. 2019, 7 (11), 9793-9799.
22. Wang, L.; Wang, Y.; Xu, T.; Liao, H.; Yao, C.; Liu, Y.; Li, Z.; Chen, Z.; Pan, D.; Sun, L.; Wu, M., Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots with Superior Optical Properties. Nat. Commun. 2014, 5, 5357.
23. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H., Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging. Angew. Chem. Int. Ed. 2015, 54 (18), 5360-5363.
24. Ding, H.; Yu, S.-B.; Wei, J.-S.; Xiong, H.-M., Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano 2016, 10 (1), 484-491.
25. Mao, Y.; Zhao, C.; Ge, S.; Luo, T.; Chen, J.; Liu, J.; Xi, F.; Liu, J., Gram-Scale Synthesis of Nitrogen Doped Graphene Quantum Dots for Sensitive Detection of Mercury Ions and L-Cysteine. RSC Adv. 2019, 9 (57), 32977-32983.
26. Wang, L.; Li, W.; Yin, L.; Liu, Y.; Guo, H.; Lai, J.; Han, Y.; Li, G.; Li, M.; Zhang, J.; Vajtai, R.; Ajayan, P. M.; Wu, M., Full-Color Fluorescent Carbon Quantum Dots. Sci. Adv. 2020, 6, eabb6772.
27. Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G., Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared By Tuning the Carbonization Degree of Citric Acid. Carbon 2012, 50 (12), 4738-4743.
28. Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J.; Lau, S. P., Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano 2012, 6 (6), 5102–5110.
29. Ding, Z.; Li, F.; Wen, J.; Wang, X.; Sun, R., Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots Derived from Lignin Biomass. Green Chem. 2018, 20 (6), 1383-1390.
30. Kumar, S.; Aziz, S. K. T.; Girshevitz, O.; Nessim, G. D., One-Step Synthesis of N-Doped Graphene Quantum Dots from Chitosan as a Sole Precursor Using Chemical Vapor Deposition. J. Phys. Chem. C 2018, 122 (4), 2343-2349.
31. Tang, L.; Ji, R.; Li, X.; Bai, G.; Liu, C. P.; Hao, J.; Lin, J.; Jiang, H.; Teng, K. S.; Yang, Z.; Lau, S. P., Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N‑Doped Graphene Quantum Dots. ACS Nano 2014, 8 (6), 6312–6320.
32. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P., Carbon Dots for Multiphoton Bioimaging. J. Am. Chem. Soc. 2007, 129, 11318-11319.
33. Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X., The Quenching of the Fluorescence of Carbon Dots: A Review on Mechanisms and Applications. Microchim. Acta 2017, 184 (7), 1899-1914.
34. Zhao, J.; Zhao, L.; Lan, C.; Zhao, S., Graphene Quantum Dots as Effective Probes for Label-Free Fluorescence Detection of Dopamine. Sens. Actuators B Chem. 2016, 223, 246-251.
35. Ma, Y.; Chen, A. Y.; Xie, X. F.; Wang, X. Y.; Wang, D.; Wang, P.; Li, H. J.; Yang, J. H.; Li, Y., Doping Effect and Fluorescence Quenching Mechanism of N-Doped Graphene Quantum Dots in the Detection of Dopamine. Talanta 2019, 196, 563-571.
36. Zhang, W.; Wu, B.; Li, Z.; Wang, Y.; Zhou, J.; Li, Y., Carbon Quantum Dots as Fluorescence Sensors for Label-Free Detection of Folic Acid in Biological Samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117931.
37. Hou, D.; O’Connor, D.; Igalavithana, A. D.; Alessi, D. S.; Luo, J.; Tsang, D. C. W.; Sparks, D. L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y. S., Metal Contamination and Bioremediation of Agricultural Soils for Food Safety and Sustainability. Nat. Rev. Earth Environ. 2020, 1 (7), 366-381.
38. Blanchfield, P. J.; Rudd, J. W. M.; Hrenchuk, L. E.; Amyot, M.; Babiarz, C. L.; Beaty, K. G.; Bodaly, R. A. D.; Branfireun, B. A.; Gilmour, C. C.; Graydon, J. A.; Hall, B. D.; Harris, R. C.; Heyes, A.; Hintelmann, H.; Hurley, J. P.; Kelly, C. A.; Krabbenhoft, D. P.; Lindberg, S. E.; Mason, R. P.; Paterson, M. J.; Podemski, C. L.; Sandilands, K. A.; Southworth, G. R.; St Louis, V. L.; Tate, L. S.; Tate, M. T., Experimental Evidence for Recovery of Mercury-Contaminated Fish Populations. Nature 2022, 601 (7891), 74-78.
39. Zhou, J.; Obrist, D.; Dastoor, A.; Jiskra, M.; Ryjkov, A., Vegetation Uptake of Mercury and Impacts on Global Cycling. Nat. Rev. Earth Environ. 2021, 2 (4), 269-284.
40. Anh, N. T. N.; Chowdhury, A. D.; Doong, R.-a., Highly Sensitive and Selective Detection of Mercury Ions using N, S-Codoped Graphene Quantum Dots and Its Paper Strip Based Sensing Application in Wastewater. Sens. Actuators B Chem. 2017, 252, 1169-1178.
41. Gao, B.; Chen, D.; Gu, B.; Wang, T.; Wang, Z.; Xie, F.; Yang, Y.; Guo, Q.; Wang, G., Facile and Highly Effective Synthesis of Nitrogen-Doped Graphene Quantum Dots as a Fluorescent Sensing Probe for Cu2+ Detection. Curr. Appl. Phys. 2020, 20 (4), 538-544.
42. Bhatt, M.; Bhatt, S.; Vyas, G.; Raval, I. H.; Haldar, S.; Paul, P., Water-Dispersible Fluorescent Carbon Dots as Bioimaging Agents and Probes for Hg2+ and Cu2+ Ions. ACS Appl. Nano Mater. 2020, 3 (7), 7096-7104.
43. Das, R.; Sugimoto, H.; Fujii, M.; Giri, P. K., Quantitative Understanding of Charge-Transfer-Mediated Fe(3+) Sensing and Fast Photoresponse by N-Doped Graphene Quantum Dots Decorated on Plasmonic Au Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12 (4), 4755-4768.
44. Kurniawan, D.; Chiang, W.-H., Microplasma-Enabled Colloidal Nitrogen-Doped Graphene Quantum Dots for Broad-Range Fluorescent pH Sensors. Carbon 2020, 167, 675-684.
45. Kurniawan, D.; Weng, R.-J.; Setiawan, O.; Ostrikov, K. K.; Chiang, W.-H., Microplasma Nanoengineering of Emission-Tuneable Colloidal Nitrogen-Doped Graphene Quantum Dots as Smart Environmental-Responsive Nanosensors and Nanothermometers. Carbon 2021, 185, 501-513.
46. Sankaran, R. M.; Giapis, K. P., Hollow Cathode Sustained Plasma Microjets: Characterization and Application to Diamond Deposition. J. Appl. Phys. 2002, 92 (5), 2406-2411.
47. Mariotti, D.; Sankaran, R. M., Microplasmas for Nanomaterials Synthesis. J. Phys. D: Appl. Phys. 2010, 43 (32), 323001.
48. Lu, Y.; Xu, S. F.; Zhong, X. X.; Ostrikov, K.; Cvelbar, U.; Mariotti, D., Characterization of a DC-Driven Microplasma between a Capillary Tube and Water Surface. EPL 2013, 102 (1), 15002.
49. Bruggeman, P. J.; Kushner, M. J.; Locke, B. R.; Gardeniers, J. G. E.; Graham, W. G.; Graves, D. B.; Hofman-Caris, R. C. H. M.; Maric, D.; Reid, J. P.; Ceriani, E.; Rivas, D. F.; Foster, J. E.; Garrick, S. C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Kolb, J.; Krcma, F.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Thagard, S. M.; Minakata, D.; Neyts, E. C.; Pawlat, J.; Petrovic, Z. L.; Pflieger, R.; Reuter, S.; Schram, D. C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P. A.; Verlet, J. R. R.; von Woedtke, T.; Wilson, K. R.; Yasui, K.; Zvereva, G., Plasma–Liquid Interactions: A Review and Roadmap. Plasma Sources Sci. Technol. 2016, 25 (5), 053002.
50. Zhou, R.; Zhou, R.; Prasad, K.; Fang, Z.; Speight, R.; Bazaka, K.; Ostrikov, K. K., Cold Atmospheric Plasma Activated Water as a Prospective Disinfectant: The Crucial Role of Peroxynitrite. Green Chem. 2018, 20 (23), 5276-5284.
51. Park, S.; Park, J. Y.; Choe, W., Origin of Hydroxyl Radicals in a Weakly Ionized Plasma-Facing Liquid. Chem. Eng. J. 2019, 378.
52. Wang, Z.; Lu, Y.; Yuan, H.; Ren, Z.; Xu, C.; Chen, J., Microplasma-Assisted Rapid Synthesis of Luminescent Nitrogen-Doped Carbon Dots and Their Application in pH Sensing and Uranium Detection. Nanoscale 2015, 7 (48), 20743-20748.
53. Chiang, W.-H.; Richmonds, C.; Sankaran, R. M., Continuous-Flow, Atmospheric-Pressure Microplasmas: A Versatile Source for Metal Nanoparticle Synthesis in the Gas or Liquid Phase. Plasma Sources Sci. Technol. 2010, 19 (3), 034011.
54. Chang, G.-Y.; Kurniawan, D.; Chang, Y.-J.; Chiang, W.-H., Microplasma-Enabled Surfaced-Functionalized Silicon Quantum Dots for Label-Free Detection of Dopamine. ACS Omega 2022, 7, 223−229.
55. Orriere, T.; Kurniawan, D.; Chang, Y.-C.; Pai, D. Z.; Chiang, W.-H., Effect of Plasma Polarity on the Synthesis of Graphene Quantum Dots by Atmospheric-Pressure Microplasmas. Nanotechnology 2020, 31 (48), 485001.
56. Yang, J.-S.; Chang, Y.-C.; Huang, Q.-H.; Lai, Y.-Y.; Chiang, W.-H., Microplasma-Enabled Nanocarbon Assembly for the Diameter-Selective Synthesis of Colloidal Graphene Quantum Dots. Chem. Commun. 2020, 56 (71), 10365-10368.
57. Yang, J.-S.; Pai, D. Z.; Chiang, W.-H., Microplasma-Enhanced Synthesis of Colloidal Graphene Quantum Dots at Ambient Conditions. Carbon 2019, 153, 315-319.
58. Lin, L.; Pho, H. Q.; Zong, L.; Li, S.; Pourali, N.; Rebrov, E.; Tran, N. N.; Ostrikov, K. K.; Hessel, V., Microfluidic Plasmas: Novel Technique for Chemistry and Chemical Engineering. Chem. Eng. J. 2021, 417, 129355.
59. Chiang, W.-H.; Mariotti, D.; Sankaran, R. M.; Eden, J. G.; Ostrikov, K. K., Microplasmas for Advanced Materials and Devices. Adv. Mater. 2020, 32 (18), e1905508.
60. Sun, P. P.; Araud, E. M.; Huang, C.; Shen, Y.; Monroy, G. L.; Zhong, S.; Tong, Z.; Boppart, S. A.; Eden, J. G.; Nguyen, T. H., Disintegration of Simulated Drinking Water Biofilms with Arrays of Microchannel Plasma Jets. NPJ Biofilms Microbiomes 2018, 4, 24.
61. Lyall, K.; Schmidt, R. J.; Hertz-Picciotto, I., Maternal Lifestyle and Environmental Risk Factors for Autism Spectrum Disorders. Int. J. Epidemiol. 2014, 43 (2), 443-464.
62. Wang, M.; Jiao, Y.; Cheng, C.; Hua, J.; Yang, Y., Nitrogen-Doped Carbon Quantum Dots as a Fluorescence Probe Combined with Magnetic Solid-Phase Extraction Purification for Analysis of Folic Acid in Human Serum. Anal. Bioanal. Chem. 2017, 409 (30), 7063-7075.
63. Zhang, A.; Neumeyer, J. L.; Baldessarini, R. J., Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem. Rev. 2007, 107, 274-302.
64. Chen, X.; Zheng, N.; Chen, S.; Ma, Q., Fluorescence Detection of Dopamine Based on Nitrogen-Doped Graphene Quantum Dots and Visible Paper-Based Test Strips. Anal. Methods 2017, 9 (15), 2246-2251.
65. Leporati, A.; Catellani, D.; Suman, M.; Andreoli, R.; Manini, P.; Niessen, W. M. A., Application of a Liquid Chromatography Tandem Mass Spectrometry Method to the Analysis of Water-Soluble Vitamins in Italian Pasta. Anal. Chim. Acta 2005, 531 (1), 87-95.
66. Li, N.; Guo, J.; Liu, B.; Yu, Y.; Cui, H.; Mao, L.; Lin, Y., Determination of Monoamine Neurotransmitters and Their Metabolites in a Mouse Brain Microdialysate by Coupling High-Performance Liquid Chromatography with Gold Nanoparticle-Initiated Chemiluminescence. Anal. Chim. Acta 2009, 645 (1-2), 48-55.
67. Nie, F.; He, Y.; Lu, J., An Investigation of the Chemiluminescence Reaction in the Sodium Hypochlorite-Folic Acid-Emicarbazide Hydrochloride System. Microchem. J. 2000, 65 (3), 319-323.
68. Zhao, S.; Huang, Y.; Shi, M.; Liu, R.; Liu, Y.-M., Chemiluminescence Resonance Energy Transfer-Based Detection for Microchip Electrophoresis. Anal. Chem. 2010, 82, 2036–2041.
69. Xu, H.; Bai, Z.; Wang, G.; O’Halloran, K. P.; Tan, L.; Pang, H.; Ma, H., Voltammetric Determination of Folic Acid at Physiological pH Values by Using a Glassy Carbon Electrode Modified with a Multilayer Composite Consisting of Polyoxometalate (H8P2Mo16V2O62) and Reduced Graphene Oxide and Prepared via Layer-by-Layer Self-Assembly and In-Situ Photoreduction. Microchim. Acta 2017, 184 (11), 4295-4303.
70. Kim, Y.-R.; Bong, S.; Kang, Y.-J.; Yang, Y.; Mahajan, R. K.; Kim, J. S.; Kim, H., Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Graphene Modified Electrodes. Biosens. Bioelectron. 2010, 25 (10), 2366-2369.
71. Zhang, T.; Xue, H.; Zhang, B.; Zhang, Y.; Song, P.; Tian, X.; Xing, Y.; Wang, P.; Meng, M.; Xi, R., Determination of Folic Acid in Milk, Milk Powder and Energy Drink by an Indirect Immunoassay. J. Sci. Food Agric. 2012, 92 (11), 2297-2304.
72. Fritzen-Garcia, M. B.; Monteiro, F. F.; Cristofolini, T.; Acuña, J. J. S.; Zanetti-Ramos, B. G.; Oliveira, I. R. W. Z.; Soldi, V.; Pasa, A. A.; Creczynski-Pasa, T. B., Characterization of Horseradish Peroxidase Immobilized on PEGylated Polyurethane Nanoparticles and Its Application for Dopamine Detection. Sens. Actuators B Chem. 2013, 182, 264-272.
73. Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P., Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Adv. Mater. 2019, 31 (21), e1808283.
74. Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B., Photoluminescence Mechanism in Graphene Quantum Dots: Quantum Confinement Effect and Surface/Edge State. Nano Today 2017, 13, 10-14.
75. Yang, Y.; Liu, Q.; Liu, Y.; Cui, J.; Liu, H.; Wang, P.; Li, Y.; Chen, L.; Zhao, Z.; Dong, Y., A Novel Label-Free Electrochemical Immunosensor Based on Functionalized Nitrogen-Doped Graphene Quantum Dots for Carcinoembryonic Antigen Detection. Biosens. Bioelectron. 2017, 90, 31-38.
76. Wang, L.; Li, M.; Li, W.; Han, Y.; Liu, Y.; Li, Z.; Zhang, B.; Pan, D., Rationally Designed Efficient Dual-Mode Colorimetric/Fluorescence Sensor Based on Carbon Dots for Detection of pH and Cu2+ Ions. ACS Sustainable Chem. Eng. 2018, 6 (10), 12668-12674.
77. Hai, X.; Wang, Y.; Hao, X.; Chen, X.; Wang, J., Folic Acid Encapsulated Graphene Quantum Dots for Ratiometric pH Sensing and Specific Multicolor Imaging in Living Cells. Sens. Actuators B Chem. 2018, 268, 61-69.
78. Li, Q.; Zhang, S.; Dai, L.; Li, L.-s., Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012, 134 (46), 18932−18935.
79. Sun, J.; Yang, S.; Wang, Z.; Shen, H.; Xu, T.; Sun, L.; Li, H.; Chen, W.; Jiang, X.; Ding, G.; Kang, Z.; Xie, X.; Jiang, M., Ultra-High Quantum Yield of Graphene Quantum Dots: Aromatic-Nitrogen Doping and Photoluminescence Mechanism. Part. Part. Syst. Charact. 2015, 32 (4), 434-440.
80. Yang, Z.; Xu, M.; Liu, Y.; He, F.; Gao, F.; Su, Y.; Wei, H.; Zhang, Y., Nitrogen-Doped, Carbon-Rich, Highly Photoluminescent Carbon Dots from Ammonium Citrate. Nanoscale 2014, 6 (3), 1890-1895.
81. Chaiendoo, K.; Ittisanronnachai, S.; Promarak, V.; Ngeontae, W., Polydopamine-Coated Carbon Nanodots are a Highly Selective Turn-On Fluorescent Probe for Dopamine. Carbon 2019, 146, 728-735.
82. Das, R.; Paul, K. K.; Giri, P. K., Highly Sensitive and Selective Label-Free Detection of Dopamine in Human Serum Based on Nitrogen-Doped Graphene Quantum Dots Decorated on Au Nanoparticles: Mechanistic Insights Through Microscopic and Spectroscopic Studies. Appl. Surf. Sci. 2019, 490, 318-330.
83. Kumar, A.; Asu, S.; Mukherjee, P.; Singh, P.; Kumari, A.; Sahu, S. K., Single-Step Synthesis of N-Doped Carbon Dots and Applied for Dopamine Sensing, In Vitro Multicolor Cellular Imaging as well as Fluorescent Ink. J. Photochem. Photobiol. A 2021, 406.
84. Zhang, Y.; Wang, B.; Xiong, H.; Wen, W.; Cheng, N., A Ratiometric Fluorometric Epinephrine and Norepinephrine Assay Based on Carbon Dot and CdTe Quantum Dots Nanocomposites. Microchem. J. 2019, 146, 66-72.
85. Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P., Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small 2015, 11 (14), 1620-1636.
86. Wang, X.; Sun, G.; Li, N.; Chen, P., Quantum Dots Derived from Two-Dimensional Materials and Their Applications for Catalysis and Energy. Chem. Soc. Rev. 2016, 45 (8), 2239-2362.
87. Valappil, M. O.; Pillai, V. K.; Alwarappan, S., Spotlighting Graphene Quantum Dots and Beyond: Synthesis, Properties and Sensing Applications. Appl. Mater. Today 2017, 9, 350-371.
88. Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X., Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions. Adv. Mater. 2012, 24 (15), 2037-2041.
89. Cai, F.; Liu, X.; Liu, S.; Liu, H.; Huang, Y., A Simple One-pot Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for the Detection of Cr(vi) in Aqueous Media. RSC Adv. 2014, 4 (94), 52016-52022.
90. Jiao, Y.; Gong, X.; Han, H.; Gao, Y.; Lu, W.; Liu, Y.; Xian, M.; Shuang, S.; Dong, C., Facile Synthesis of Orange Fluorescence Carbon Dots with Excitation Independent Emission for pH Sensing and Cellular Imaging. Anal. Chim. Acta 2018, 1042, 125-132.
91. Novoa-De León, I. C.; Johny, J.; Vázquez-Rodríguez, S.; García-Gómez, N.; Carranza-Bernal, S.; Mendivil, I.; Shaji, S.; Sepúlveda-Guzmán, S., Tuning the Luminescence of Nitrogen-Doped Graphene Quantum Dots Synthesized by Pulsed Laser Ablation in Liquid and Their Use as a Selective Photoluminescence On–Off–On Probe for Ascorbic Acid Detection. Carbon 2019, 150, 455-464.
92. Sharma, A.; Gadly, T.; Gupta, A.; Ballal, A.; Ghosh, S. K.; Kumbhakar, M., Origin of Excitation Dependent Fluorescence in Carbon Nanodots. J. Phys. Chem. Lett. 2016, 7 (18), 3695-702.
93. Zajac, A.; Hanuza, J.; Wandas, M.; Dyminska, L., Determination of N-Acetylation Degree in Chitosan Using Raman Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 134, 114-120.
94. Podila, R.; Chacón-Torres, J.; Spear, J. T.; Pichler, T.; Ayala, P.; Rao, A. M., Spectroscopic Investigation of Nitrogen Doped Graphene. Appl. Phys. Lett. 2012, 101 (12), 123108.
95. Rajender, G.; Giri, P. K., Formation Mechanism of Graphene Quantum Dots and Their Edge State Conversion Probed by Photoluminescence and Raman Spectroscopy. J. Mater. Chem. C 2016, 4 (46), 10852-10865.
96. Zhu, C.; Yang, S.; Wang, G.; Mo, R.; He, P.; Sun, J.; Di, Z.; Yuan, N.; Ding, J.; Ding, G.; Xie, X., Negative Induction Effect of Graphite N on Graphene Quantum Dots: Tunable Band Gap Photoluminescence. J. Mater. Chem. C 2015, 3 (34), 8810-8816.
97. Baldwin, E. K.; Friend, C. M., Summary Abstract: X‐Ray Photoelectron Spectroscopy Studies of NO and N2O on Clean and Oxygen Covered W(100) Surfaces. J. Vac. Sci. Technol. A 1986, 4 (3), 1407-1407.
98. Martin-Pacheco, A.; Castillo, A. E. D. R.; Martin, C.; Herrero, M. A.; Merino, S.; Fierro, J. L. G.; Diez-Barra, E.; Vazquez, E., Graphene Quantum Dot-Aerogel: From Nanoscopic to Macroscopic Fluorescent Materials. Sensing Polyaromatic Compounds in Water. ACS Appl. Mater. Interfaces 2018, 10 (21), 18192-18201.
99. Wang, Y.; Yang, M.; Ren, Y.; Fan, J., Cu-Mn Codoped ZnS Quantum Dots-Based Ratiometric Fluorescent Sensor for Folic Acid. Anal. Chim. Acta 2018, 1040, 136-142.
100. Li, X.; Wu, X.; Zhang, F.; Zhao, B.; Li, Y., Label-Free Detection of Folic Acid Using a Sensitive Fluorescent Probe Based on Ovalbumin Stabilized Copper Nanoclusters. Talanta 2019, 195, 372-380.
101. Yan, S.; Deng, D.; Zhang, L.; Lv, Y., Fluorescence Nano Metal Organic Frameworks Modulated by Encapsulation for Construction of Versatile Biosensor. Talanta 2019, 201, 96-103.
102. Louleb, M.; Latrous, L.; Ríos, Á.; Zougagh, M.; Rodríguez-Castellón, E.; Algarra, M.; Soto, J., Detection of Dopamine in Human Fluids Using N-Doped Carbon Dots. ACS Appl. Nano Mater. 2020, 3 (8), 8004-8011.
103. Zhang, F.; Wang, M.; Zeng, D.; Zhang, H.; Li, Y.; Su, X., A Molybdenum Disulfide Quantum Dots-Based Ratiometric Fluorescence Strategy for Sensitive Detection of Epinephrine and Ascorbic Acid. Anal. Chim. Acta 2019, 1089, 123-130.
104. Wang, M.; Li, Y.; Wang, L.; Su, X., A Label-Free Fluorescence Nanosensor for the Determination of Adrenaline Based on Graphene Quantum Dots. Anal. Methods 2017, 9 (30), 4434-4438.
105. Wei, F.; Xu, G.; Wu, Y.; Wang, X.; Yang, J.; Liu, L.; Zhou, P.; Hu, Q., Molecularly Imprinted Polymers on Dual-Color Quantum Dots for Simultaneous Detection of Norepinephrine and Epinephrine. Sens. Actuators B Chem. 2016, 229, 38-46.
106. Sparks, L. D.; Robert Scheldt, W.; Shelnutt, J. A., Effects of π-π Interactions on Molecular Structure and Resonance Raman Spectra of Crystalline Copper(II) Octaethylporphyrin. Inorg. Chem. 1992, 31 (11), 2192-2196.
107. Fasolato, C.; Giantulli, S.; Silvestri, I.; Mazzarda, F.; Toumia, Y.; Ripanti, F.; Mura, F.; Luongo, F.; Costantini, F.; Bordi, F.; Postorino, P.; Domenici, F., Folate-Based Single Cell Screening Using Surface Enhanced Raman Microimaging. Nanoscale 2016, 8 (39), 17304-17313.
108. Wang, X.; Sun, X.; Lao, J.; He, H.; Cheng, T.; Wang, M.; Wang, S.; Huang, F., Multifunctional Graphene Quantum Dots for Simultaneous Targeted Cellular Imaging and Drug Delivery. Colloids Surf. B 2014, 122, 638-644.
109. Solovyeva, E. V.; Borisov, E., Demonstration of Physical and Analytical Features of Surface-Enhanced Raman Scattering by Analysis of Folic Acid in Commercial Tablets. J. Chem. Educ. 2020, 97 (8), 2249-2253.
110. Castillo, J. J.; Rindzevicius, T.; Rozo, C. E.; Boisen, A., Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-Enhanced Raman Scattering Spectroscopy. Nanomater. Nanotechnol. 2015, 5.
111. Figueiredo, M. L. B.; Martin, C. S.; Furini, L. N.; Rubira, R. J. G.; Batagin-Neto, A.; Alessio, P.; Constantino, C. J. L., Surface-Enhanced Raman Scattering for Dopamine in Ag Colloid: Adsorption Mechanism and Detection in the Presence of Interfering Species. Appl. Surf. Sci. 2020, 522.
112. Hunter, C. A.; Sanders, J. K. M., The Nature of π–π Interactions. J. Am. Chem. Soc. 1990, 112 (14), 5525-5534.
113. Zhang, Z.; Huang, H.; Yang, X.; Zang, L., Tailoring Electronic Properties of Graphene by π–π Stacking with Aromatic Molecules. J. Phys. Chem. Lett. 2011, 2 (22), 2897-2905.
114. Martinez, C. R.; Iverson, B. L., Rethinking the Term “pi-stacking”. Chem. Sci. 2012, 3 (7).
115. Le, T. H.; Lee, D. H.; Kim, J. H.; Park, S. J., Synthesis of Enhanced Fluorescent Graphene Quantum Dots for Catecholamine Neurotransmitter Sensing. Korean J. Chem. Eng. 2020, 37 (6), 1000-1007.
116. Bixon, M.; Jortner, J.; Verhoeven, J. W., Lifetimes for Radiative Charge Recombination in Donor-Acceptor Molecules. J. Am. Chem. Soc. 1994, 116, 7349-7355.
117. Williams, R. M.; Zwier, J. M.; Verhoeven, J. W., Photoinduced Intramolecular Electron Transfer in a Bridged C60 (Acceptor)—Aniline (Donor) System. Photophysical Properties of the First “Active” Fullerene Diad. J. Am. Chem. Soc. 1995, 117, 4093-4099.
118. Tan, S. W.; Meiller, J. C.; Mahaffey, K. R., The Endocrine Effects of Mercury in Humans and Wildlife. Crit. Rev. Toxicol. 2009, 39, 228-269.
119. Ha, E.; Basu, N.; Bose-O'Reilly, S.; Dorea, J. G.; McSorley, E.; Sakamoto, M.; Chan, H. M., Current Progress on Understanding The Impact of Mercury on Human Health. Environ. Res. 2017, 152, 419-433.
120. Li, Z.; Wang, Y.; Ni, Y.; Kokot, S., A Rapid and Label-Free Dual Detection of Hg (II) and Cysteine with the Use of Fluorescence Switching of Graphene Quantum Dots. Sens. Actuators B Chem. 2015, 207, 490-497.
121. Linder, M. C.; Hazegh-Azam, M., Copper Biochemistry and Molecular Biology. Am. J. Clin. Nutr. 1996, 63 (5), 797S-811S.
122. Liu, Z.; Chen, M.; Guo, Y.; Zhou, J.; Shi, Q.; Sun, R., Oxidized Nanocellulose Facilitates Preparing Photoluminescent Nitrogen-Doped Fluorescent Carbon Dots for Fe3+ Ions Detection and Bioimaging. Chem. Eng. J. 2020, 384, 123260.
123. Multhaup, G.; Schlicksupp, A.; Hesse, L.; Beher, D.; Ruppert, T.; Masters, C. L.; Beyreuther, K., The Amyloid Precursor Protein of Alzheimer's Disease in the Reduction of Copper(II) to Copper(I). Science 1996, 271 (5254), 1406-1409.
124. Graper, M. L.; Huster, D.; Kaler, S. G.; Lutsenko, S.; Schilsky, M. L.; Thiele, D. J., Introduction to Human Disorders of Copper Metabolism. Ann. N. Y. Acad. Sci. 2014, 1314.
125. Camaschella, C., Iron and Hepcidin: A Story of Recycling and Balance. Hematology Am. Soc. Hematol. Educ. Program 2013, 2013 (1), 1-8.
126. Abbas, A.; Tabish, T. A.; Bull, S. J.; Lim, T. M.; Phan, A. N., High Yield Synthesis of Graphene Quantum Dots from Biomass Waste as a Highly Selective Probe for Fe(3+) Sensing. Sci. Rep. 2020, 10 (1), 21262.
127. Liu, Z.; Mo, Z.; Niu, X.; Yang, X.; Jiang, Y.; Zhao, P.; Liu, N.; Guo, R., Highly Sensitive Fluorescence Sensor for Mercury(II) Based on Boron- and Nitrogen-co-Doped Graphene Quantum Dots. J. Colloid Interface Sci. 2020, 566, 357-368.
128. Ge, J.; Shen, Y.; Wang, W.; Li, Y.; Yang, Y., N-Doped Carbon Dots for Highly Sensitive and Selective Sensing of Copper Ion and Sulfide Anion in Lake Water. J. Environ. Chem. Eng. 2021, 9 (2), 105081.
129. Wang, C.; Xu, Z.; Cheng, H.; Lin, H.; Humphrey, M. G.; Zhang, C., A Hydrothermal Route to Water-Stable Luminescent Carbon Dots as Nanosensors for pH and Temperature. Carbon 2015, 82, 87-95.
130. Kumawat, M. K.; Thakur, M.; Gurung, R. B.; Srivastava, R., Graphene Quantum Dots from Mangifera indica: Application in Near-Infrared Bioimaging and Intracellular Nanothermometry. ACS Sustainable Chem. Eng. 2017, 5 (2), 1382-1391.
131. Chong, Y.; Ma, Y.; Shen, H.; Tu, X.; Zhou, X.; Xu, J.; Dai, J.; Fan, S.; Zhang, Z., The In Vitro and In Vivo Toxicity of Graphene Quantum Dots. Biomaterials 2014, 35 (19), 5041-5048.
132. Zhang, R.; Chen, W., Nitrogen-Doped Carbon Quantum Dots: Facile Synthesis and Application as A "Turn-Off" Fluorescent Probe for Detection of Hg2+ Ions. Biosens. Bioelectron. 2014, 55, 83-90.
133. Wu, Z. L.; Gao, M. X.; Wang, T. T.; Wan, X. Y.; Zheng, L. L.; Huang, C. Z., A General Quantitative pH Sensor Developed with Dicyandiamide N-Doped High Quantum Yield Graphene Quantum Dots. Nanoscale 2014, 6 (7), 3868-3874.
134. Jiao, X.-Y.; Li, L.-s.; Qin, S.; Zhang, Y.; Huang, K.; Xu, L., The Synthesis of Fluorescent Carbon Dots from Mango Peel and Their Multiple Applications. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 306-314.
135. Yeh, T.-F.; Teng, C.-Y.; Chen, S.-J.; Teng, H., Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination. Adv. Mater. 2014, 26 (20), 3297–3303.
136. Lv, R.; Terrones, M., Towards New Graphene Materials: Doped Graphene Sheets and Nanoribbons. Mater. Lett. 2012, 78, 209-218.
137. Kruss, S.; Hilmer, A. J.; Zhang, J.; Reuel, N. F.; Mu, B.; Strano, M. S., Carbon Nanotubes as Optical Biomedical Sensors. Adv. Drug Deliv. Rev. 2013, 65 (15), 1933-1950.
138. Zhang, J.; Terrones, M.; Park, C. R.; Mukherjee, R.; Monthioux, M.; Koratkar, N.; Kim, Y. S.; Hurt, R.; Frackowiak, E.; Enoki, T.; Chen, Y.; Chen, Y.; Bianco, A., Carbon Science in 2016: Status, Challenges and Perspectives. Carbon 2016, 98, 708-732.
139. Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z.; Chen, A.; Jin, M.; Yang, S., Engineering Triangular Carbon Quantum Dots with Unprecedented Narrow Bandwidth Emission for Multicolored LEDs. Nat. Commun. 2018, 9 (1), 2249.
140. Wang, R.; Jiao, L.; Zhou, X.; Guo, Z.; Bian, H.; Dai, H., Highly Fluorescent Graphene Quantum Dots from Biorefinery Waste for Tri-Channel Sensitive Detection of Fe(3+) Ions. J. Hazard. Mater. 2021, 412, 125096.
141. Wang, Z.; Chen, D.; Gu, B.; Gao, B.; Liu, Z.; Yang, Y.; Guo, Q.; Zheng, X.; Wang, G., Yellow Emissive Nitrogen-Doped Graphene Quantum Dots as a Label-Free Fluorescent Probe for Fe3+ Sensing and Bioimaging. Diam. Relat. Mater. 2020, 104, 107749.
142. Zulfajri, M.; Gedda, G.; Chang, C. J.; Chang, Y. P.; Huang, G. G., Cranberry Beans Derived Carbon Dots as a Potential Fluorescence Sensor for Selective Detection of Fe(3+) Ions in Aqueous Solution. ACS Omega 2019, 4 (13), 15382-15392.
143. Qi, H.; Teng, M.; Liu, M.; Liu, S.; Li, J.; Yu, H.; Teng, C.; Huang, Z.; Liu, H.; Shao, Q.; Umar, A.; Ding, T.; Gao, Q.; Guo, Z., Biomass-Derived Nitrogen-Doped Carbon Quantum Dots: Highly Selective Fluorescent Probe for Detecting Fe(3+) Ions and Tetracyclines. J. Colloid Interface Sci. 2019, 539, 332-341.
144. Liu, X.; Han, J.; Hou, X.; Altincicek, F.; Oncel, N.; Pierce, D.; Wu, X.; Zhao, J. X., One-Pot Synthesis of Graphene Quantum Dots using Humic Acid and Its Application for Copper (II) Ion Detection. J. Mater. Sci. 2020, 56 (8), 4991-5005.
145. Rumbach, P.; Bartels, D. M.; Sankaran, R. M.; Go, D. B., The Solvation of Electrons by an Atmospheric-Pressure Plasma. Nat. Commun. 2015, 6, 7248.
146. Hu, S.; Trinchi, A.; Atkin, P.; Cole, I., Tunable Photoluminescence Across the Entire Visible Spectrum from Carbon Dots Excited by White Light. Angew. Chem. Int. Ed. 2015, 54 (10), 2970-2974.
147. Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S. X.-A., Carbon Dots with Continuously Tunable Full-Color Emission and Their Application in Ratiometric pH Sensing. Chem. Mater. 2014, 26 (10), 3104-3112.
148. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P. M., Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012, 12 (2), 844-849.
149. Ritter, K. A.; Lyding, J. W., The Influence of Edge Structure on the Electronic Properties of Graphene Quantum Dots and Nanoribbons. Nat. Mater. 2009, 8 (3), 235-242.
150. Yeh, T.-F.; Huang, W.-L.; Chung, C.-J.; Chiang, I.-T.; Chen, L.-C.; Chang, H.-Y.; Su, W.-C.; Cheng, C.; Chen, S.-J.; Teng, H., Elucidating Quantum Confinement in Graphene Oxide Dots Based on Excitation-Wavelength-Independent Photoluminescence. J. Phys. Chem. Lett. 2016, 7 (11), 2087-2092.
151. Yang, P.; Zhu, Z.; Zhang, T.; Zhang, W.; Chen, W.; Cao, Y.; Chen, M.; Zhou, X., Orange-Emissive Carbon Quantum Dots: Toward Application in Wound pH Monitoring Based on Colorimetric and Fluorescent Changing. Small 2019, e1902823.
152. Lv, R.; Li, Q.; Botello-Mendez, A. R.; Hayashi, T.; Wang, B.; Berkdemir, A.; Hao, Q.; Elias, A. L.; Cruz-Silva, R.; Gutierrez, H. R.; Kim, Y. A.; Muramatsu, H.; Zhu, J.; Endo, M.; Terrones, H.; Charlier, J. C.; Pan, M.; Terrones, M., Nitrogen-Doped Graphene: Beyond Single Substitution and Enhanced Molecular Sensing. Sci. Rep. 2012, 2, 586.
153. Ye, X.; Xiang, Y.; Wang, Q.; Li, Z.; Liu, Z., A Red Emissive Two-Photon Fluorescence Probe Based on Carbon Dots for Intracellular pH Detection. Small 2019, e1901673.
154. Li, H.-J.; Sun, X.; Xue, F. F.; Ou, N.; Sun, B.-W.; Qian, D.-J.; Chen, M.; Wang, D.; Yang, J. H.; Wang, X. Y., Redox Induced Fluorescence On–Off Switching Based on Nitrogen Enriched Graphene Quantum Dots for Formaldehyde Detection and Bioimaging. ACS Sustainable Chem. Eng. 2018, 6 (2), 1708-1716.
155. Molina, R.; Jovancic, P.; Vilchez, S.; Tzanov, T.; Solans, C., In Situ Chitosan Gelation Initiated by Atmospheric Plasma Treatment. Carbohydr. Polym. 2014, 103, 472-479.
156. Mariotti, D.; Patel, J.; Švrček, V.; Maguire, P., Plasma-Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering. Plasma Process. Polym. 2012, 9 (11-12), 1074-1085.
157. Huang, X.; Li, Y.; Zhong, X.; Rider, A. E.; Ostrikov, K. K., Fast Microplasma Synthesis of Blue Luminescent Carbon Quantum Dots at Ambient Conditions. Plasma Process. Polym. 2015, 12 (1), 59-65.
158. Carolan, D.; Rocks, C.; Padmanaban, D. B.; Maguire, P.; Svrcek, V.; Mariotti, D., Environmentally Friendly Nitrogen-Doped Carbon Quantum Dots for Next Generation Solar Cells. Sustainable Energy Fuels 2017, 1 (7), 1611-1619.
159. Ma, X.; Li, S.; Hessel, V.; Lin, L.; Meskers, S.; Gallucci, F., Synthesis of Luminescent Carbon Quantum Dots by Microplasma Process. Chem. Eng. Process. 2019, 140, 29-35.
160. Joffrion, J. B.; Clower, W.; Wilson, C. G., Tunable Excitation-Independent Emissions from Graphene Quantum Dots through Microplasma-Assisted Electrochemical Synthesis. Nano-Struct. Nano-Objects 2019, 19.
161. Ma, X.; Li, S.; Hessel, V.; Lin, L.; Meskers, S.; Gallucci, F., Synthesis of N-Doped Carbon Dots via A Microplasma Process. Chem. Eng. Sci. 2020, 220, 115648.
162. Marotta, E.; Paradisi, C., A Mass Spectrometry Study of Alkanes in Air Plasma at Atmospheric Pressure. J. Am. Soc. Mass Spectrom. 2009, 20 (4), 697-707.
163. Teng, C.-Y.; Yeh, T.-F.; Lin, K.-I.; Chen, S.-J.; Yoshimura, M.; Teng, H., Synthesis of Graphene Oxide Dots for Excitation-Wavelength Independent Photoluminescence at High Quantum Yields. J. Mater. Chem. C 2015, 3 (17), 4553-4562.
164. Gorbanev, Y.; Leifert, D.; Studer, A.; O'Connell, D.; Chechik, V., Initiating Radical Reactions with Non-Thermal Plasmas. Chem. Commun. 2017, 53 (26), 3685-3688.
165. Sadhanala, H. K.; Nanda, K. K., Boron-Doped Carbon Nanoparticles: Size-Independent Color Tunability from Red to Blue and Bioimaging Applications. Carbon 2016, 96, 166-173.
166. Liu, M., Optical Properties of Carbon Dots: A Review. Nanoarchitectonics 2019, 1 (1), 1-12.
167. Su, Y.; Xie, Z.; Zheng, M., Carbon Dots with Concentration-Modulated Fluorescence: Aggregation-Induced Multicolor Emission. J. Colloid Interface Sci. 2020, 573, 241-249.
168. Gu, S.; Hsieh, C.-T.; Tsai, Y.-Y.; Ashraf Gandomi, Y.; Yeom, S.; Kihm, K. D.; Fu, C.-C.; Juang, R.-S., Sulfur and Nitrogen Co-Doped Graphene Quantum Dots as a Fluorescent Quenching Probe for Highly Sensitive Detection toward Mercury Ions. ACS Appl. Nano Mater. 2019, 2 (2), 790-798.
169. Shen, C.; Ge, S.; Pang, Y.; Xi, F.; Liu, J.; Dong, X.; Chen, P., Facile and Scalable Preparation of Highly Luminescent N,S Co-Doped Graphene Quantum Dots and Their Application for Parallel Detection of Multiple Metal Ions. J. Mater. Chem. B 2017, 5 (32), 6593-6600.
170. Anitha, K.; Namsani, S.; Singh, J. K., Removal of Heavy Metal Ions Using a Functionalized Single-Walled Carbon Nanotube: A Molecular Dynamics Study. J. Phys. Chem. A 2015, 119 (30), 8349-8358.
171. Yeh, P.-C.; Yoon, S.; Kurniawan, D.; Chung, Y. G.; Chiang, W.-H., Unraveling the Fluorescence Quenching of Colloidal Graphene Quantum Dots for Selective Metal Ion Detection. ACS Appl. Nano Mater. 2021, 4 (6), 5636-5642.
172. Zhu, S.; Zhang, J.; Tang, S.; Qiao, C.; Wang, L.; Wang, H.; Liu, X.; Li, B.; Li, Y.; Yu, W.; Wang, X.; Sun, H.; Yang, B., Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications. Adv. Funct. Mater. 2012, 22 (22), 4732-4740.
173. Brouwer, A. M., Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83 (12), 2213-2228.
174. Hao, Y.-N.; Guo, H.-L.; Tian, L.; Kang, X., Enhanced Photoluminescence of Pyrrolic-Nitrogen Enriched Graphene Quantum Dots. RSC Adv. 2015, 5 (54), 43750-43755.
175. Noor, N. F. M.; Badri, M. A. S.; Salleh, M. M.; Umar, A. A., Synthesis of White Fluorescent Pyrrolic Nitrogen-Doped Graphene Quantum Dots. Opt. Mater. 2018, 83, 306-314.
176. Casey, J. R.; Grinstein, S.; Orlowski, J., Sensors and Regulators of Intracellular pH. Nat. Rev. Mol. Cell. Biol. 2010, 11 (1), 50-61.
177. Stubbs, M.; McSheehy, P. M. J.; Griffiths, J. R.; Bashford, C. L., Causes and Consequences of Tumour Acidity and Implications for Treatment. Mol. Med. Today 2000, 6 (1), 15-19.
178. Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L., Dysregulated pH: A Perfect Storm for Cancer Progression. Nat. Rev. Cancer 2011, 11 (9), 671-677.
179. Schneider, L. A.; Korber, A.; Grabbe, S.; Dissemond, J., Influence of pH on Wound-Healing: A New Perspective for Wound-Therapy? Arch. Dermatol. Res. 2007, 298 (9), 413-420.
180. Gethin, G., The Significance of Surface pH in Chronic Wounds. Wounds UK 2007, 3 (3), 52-56.
181. He, T.; Wang, Y.; Tian, X.; Gao, Y.; Zhao, X.; Grimsdale, A. C.; Lin, X.; Sun, H., An Organic Dye with Very Large Stokes-Shift and Broad Tunability of Fluorescence: Potential Two-Photon Probe for Bioimaging and Ultra-Sensitive Solid-State Gas Sensor. Appl. Phys. Lett. 2016, 108 (1), 011901.
182. Ren, T.-B.; Xu, W.; Zhang, W.; Zhang, X.-X.; Wang, Z.-Y.; Xiang, Z.; Yuan, L.; Zhang, X.-B., A General Method to Increase Stokes Shift by Introducing Alternating Vibronic Structures. J. Am. Chem. Soc. 2018, 140 (24), 7716-7722.
183. He, S.; Turnbull, M. J.; Nie, Y.; Sun, X.; Ding, Z., Band Structures of Blue Luminescent Nitrogen-Doped Graphene Quantum Dots by Synchrotron-Based XPS. Surf. Sci. 2018, 676, 51-55.
184. Ruiz, B. G.; Roux, S.; Courtois, F.; Bonazzi, C., Spectrophotometric Method for Fast Quantification of Ascorbic Acid and Dehydroascorbic Acid in Simple Matrix for Kinetics Measurements. Food Chem. 2016, 211, 583-589.
185. Wu, T.; Wu, C.; Xiang, Y.; Huang, J.; Luan, L.; Chen, S.; Hu, Y., Kinetics and Mechanism of Degradation of Chitosan by Combining Sonolysis with H2O2/Ascorbic Acid. RSC Adv. 2016, 6 (80), 76280-76287.
186. Shi, B.; Zhang, L.; Lan, C.; Zhao, J.; Su, Y.; Zhao, S., One-Pot Green Synthesis of Oxygen-Rich Nitrogen-Doped Graphene Quantum Dots and Their Potential Application in pH-Sensitive Photoluminescence and Detection of Mercury(II) Ions. Talanta 2015, 142, 131-139.
187. Zhang, C.; Cui, Y.; Song, L.; Liu, X.; Hu, Z., Microwave Assisted One-Pot Synthesis of Graphene Quantum Dots as Highly Sensitive Fluorescent Probes for Detection of Iron Ions and pH Value. Talanta 2016, 150, 54-60.
188. Liu, X.; Yang, C.; Zheng, B.; Dai, J.; Yan, L.; Zhuang, Z.; Du, J.; Guo, Y.; Xiao, D., Green Anhydrous Synthesis of Hydrophilic Carbon Dots on Large-Scale and Their Application for Broad Fluorescent pH Sensing. Sens. Actuators B Chem. 2018, 255, 572-579.
189. Liu, S. G.; Liu, T.; Li, N.; Geng, S.; Lei, J. L.; Li, N. B.; Luo, H. Q., Polyethylenimine-Derived Fluorescent Nonconjugated Polymer Dots with Reversible Dual-Signal pH Response and Logic Gate Operation. J. Phys. Chem. C 2017, 121 (12), 6874-6883.
190. Yu, Y.; Li, C.; Chen, C.; Huang, H.; Liang, C.; Lou, Y.; Chen, X.-B.; Shi, Z.; Feng, S., Saccharomyces-Derived Carbon Dots for Biosensing pH and Vitamin B 12. Talanta 2019, 195, 117-126.
191. Choudhury, S. D.; Chethodil, J. M.; Gharat, P. M.; P, K. P.; Pal, H., pH-Elicited Luminescence Functionalities of Carbon Dots: Mechanistic Insights. J. Phys. Chem. Lett. 2017, 8 (7), 1389-1395.
192. Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J., Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Adv. Sci. 2015, 2 (1-2), 1400010.
193. Yang, C.; Suo, Z., Hydrogel Ionotronics. Nat. Rev. Mater. 2018, 3 (6), 125-142.
194. Pastoriza-Santos, I.; Kinnear, C.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M., Plasmonic Polymer Nanocomposites. Nat. Rev. Mater. 2018, 3 (10), 375-391.
195. Ates, B.; Koytepe, S.; Ulu, A.; Gurses, C.; Thakur, V. K., Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem. Rev. 2020, 120 (17), 9304-9362.
196. Geng, H.; Xu, Q.; Wu, M.; Ma, H.; Zhang, P.; Gao, T.; Qu, L.; Ma, T.; Li, C., Plant Leaves Inspired Sunlight-Driven Purifier for High-Efficiency Clean Water Production. Nat. Commun. 2019, 10 (1), 1512.
197. Zhou, X.; Zhao, F.; Guo, Y.; Rosenberger, B.; Yu, G., Architecting Highly Hydratable Polymer Networks to Tune the Water State for Solar Water Purification. Sci. Adv. 2019, 5 (6), eaaw5484.
198. Petrenko, I.; Summers, A. P.; Simon, P.; Żółtowska-Aksamitowska, S.; Motylenko, M.; Schimpf, C.; Rafaja, D.; Roth, F.; Kummer, K.; Brendler, E.; Pokrovsky, O. S.; Galli, R.; Wysokowski, M.; Meissner, H.; Niederschlag, E.; Joseph, Y.; Molodtsov, S.; Ereskovsky, A.; Sivkov, V.; Nekipelov, S.; Petrova, O.; Volkova, O.; Bertau, M.; Kraft, M.; Rogalev, A.; Kopani, M.; Jesionowski, T.; Ehrlich, H., Extreme Biomimetics: Preservation of Molecular Detail in Centimeter-Scale Samples of Biological Meshes Laid Down by Sponges. Sci. Adv. 2019, 5, eaax2805.
199. Zhang, W.; Xu, H.; Xie, F.; Ma, X.; Niu, B.; Chen, M.; Zhang, H.; Zhang, Y.; Long, D., General Synthesis of Ultrafine Metal Oxide/Reduced Graphene Oxide Nanocomposites for Ultrahigh-Flux Nanofiltration Membrane. Nat. Commun. 2022, 13 (1), 471.
200. Cai, L.; Zhang, L.; Xu, X., One-Step Synthesis of Ultra-Small Silver Nanoparticles-Loaded Triple-Helix β-Glucan Nanocomposite for Highly Catalytic Hydrogenation of 4-Nitrophenol and Dyes. Chem. Eng. J. 2022, 442, 136114.
201. Zhao, N.; Yan, L.; Zhao, X.; Chen, X.; Li, A.; Zheng, D.; Zhou, X.; Dai, X.; Xu, F.-J., Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem. Rev. 2019, 119 (3), 1666-1762.
202. Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G., Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chem. Rev. 2020, 120 (15), 7642-7707.
203. Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J., Biological Applications of Gold Nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908.
204. Subair, R.; Tripathi, B. P.; Formanek, P.; Simon, F.; Uhlmann, P.; Stamm, M., Polydopamine Modified Membranes with In Situ Synthesized Gold Nanoparticles for Catalytic and Environmental Applications. Chem. Eng. J. 2016, 295, 358-369.
205. Nolan, H.; Sun, D.; Falzon, B. G.; Maguire, P.; Mariotti, D.; Zhang, L.; Sun, D., Thermoresponsive Nanocomposites Incorporating Microplasma Synthesized Magnetic Nanoparticles-Synthesis and Potential Applications. Plasma Process Polym. 2019, 16 (2), 1800128.
206. Yeh, Y.-J.; Chiang, W.-H., Ag Microplasma-Engineered Nanoassemblies on Cellulose Papers for Surface-Enhanced Raman Scattering and Catalytic Nitrophenol Reduction. ACS Appl. Nano Mater. 2021, 4 (6), 6364-6375.
207. Kurniawan, D.; Anjali, B. A.; Setiawan, O.; Ostrikov, K. K.; Chung, Y. G.; Chiang, W.-H., Microplasma Band Structure Engineering in Graphene Quantum Dots for Sensitive and Wide-Range pH Sensing. ACS Appl. Mater. Interfaces 2022, 14 (1), 1670-1683.
208. Satapathy, M. K.; Manga, Y. B.; Ostrikov, K. K.; Chiang, W.-H.; Pandey, A.; R, L.; Nyambat, B.; Chuang, E.-Y.; Chen, C.-H., Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery. ACS Appl. Mater. Interfaces 2020, 12 (1), 86-95.
209. Nolan, H.; Sun, D.; Falzon, B. G.; Chakrabarti, S.; Padmanaba, D. B.; Maguire, P.; Mariotti, D.; Yu, T.; Jones, D.; Andrews, G.; Sun, D., Metal Nanoparticle-Hydrogel Nanocomposites for Biomedical Applications - An Atmospheric Pressure Plasma Synthesis Approach. Plasma Process Polym. 2018, 15 (11), 1800112.
210. Seo, D.; Yue, Z.; Wang, X.; Levchenko, I.; Kumar, S.; Dou, S.; Ostrikov, K. K., Tuning of Magnetization in Vertical Graphenes by Plasma-Enabled Chemical Conversion of Organic Precursors with Different Oxygen Content. Chem. Commun. 2013, 49 (99), 11635-11637.
211. Amgoth, C.; Singh, A.; Santhosh, R.; Yumnam, S.; Mangla, P.; Karthik, R.; Guping, T.; Banavoth, M., Solvent Assisted Size Effect on AuNPs and Significant Inhibition on K562 Cells. RSC Adv. 2019, 9 (58), 33931-33940.
212. Liu, H.; Liu, H., Selective Dye Adsorption and Metal Ion Detection Using Multifunctional Silsesquioxane-Based Tetraphenylethene-Linked Nanoporous Polymers. J. Mater. Chem. A 2017, 5 (19), 9156-9162.
213. Hu, X.-S.; Liang, R.; Sun, G., Super-Adsorbent Hydrogel for Removal of Methylene Blue Dye from Aqueous Solution. J. Mater. Chem. A 2018, 6 (36), 17612-17624.
214. Van Tran, V.; Park, D.; Lee, Y. C., Hydrogel Applications for Adsorption of Contaminants in Water and Wastewater Treatment. Environ. Sci. Pollut. Res. 2018, 25 (25), 24569-24599.
215. Bogireddy, N. K. R.; Cruz Silva, R.; Valenzuela, M. A.; Agarwal, V., 4-Nitrophenol Optical Sensing with N Doped Oxidized Carbon Dots. J. Hazard. Mater. 2020, 386, 121643.
216. Ilgin, P.; Ozay, O.; Ozay, H., A Novel Hydrogel Containing Thioether Group as Selective Support Material for Preparation of Gold Nanoparticles: Synthesis and Catalytic Applications. Appl. Catal. B: Environ. 2019, 241, 415-423.
217. Wu, H.; Huang, X.; Gao, M.; Liao, X.; Shi, B., Polyphenol-Grafted Collagen Fiber as Reductant and Stabilizer for One-Step Synthesis of Size-Controlled Gold Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Green Chem. 2011, 13, 651–658.
218. Shanmugaraj, K.; Bustamante, T. M.; Torres, C. C.; Campos, C. H., Gold Nanoparticles Supported on Mesostructured Oxides for the Enhanced Catalytic Reduction of 4-Nitrophenol in Water. Catal. Today 2020, 388-389, 383-393.
219. Guo, Y.; Cheng, Y.; Li, X.; Li, Q.; Li, X.; Chu, K., MXene Quantum Dots Decorated Ni Nanoflowers for Efficient Cr (VI) Reduction. J. Hazard. Mater. 2022, 423, 127053.

無法下載圖示 全文公開日期 2024/08/02 (校內網路)
全文公開日期 2024/08/02 (校外網路)
全文公開日期 2024/08/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE