簡易檢索 / 詳目顯示

研究生: 高子媛
Tzu-Yuan Kao
論文名稱: 鋯基與銅基金屬玻璃薄膜:物理與抗菌性質之研究
Zr- and Cu-based thin film metallic glasses: Evaluations of physical and antibacterial properties
指導教授: 朱瑾
Jinn P. Chu
口試委員: 陳明仁
Ming-Jen Chen
郭俞麟
Yu-Lin Kuo
鄭憲清
Jason S. C. Jang
黃何雄
Her-Hsiung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 100
中文關鍵詞: 金屬玻璃薄膜非晶表面粗糙度抗菌性質表面能疏水性質
外文關鍵詞: thin film metallic glasses, amorphous, surface roughness, antibacterial property, surface free energy, hydrophobic
相關次數: 點閱:311下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本碩士論文主要以新穎材料金屬玻璃薄膜為研究方向,近年來金屬玻璃已被廣泛的研究,包含金屬玻璃製備的製程開發、機械性質與應用等。金屬玻璃有著獨特的特性諸如高強度、高硬度、抗腐蝕性佳以及好的抗磨耗特性,還有非常平滑的表面和絕佳的熱塑性性質,基於上述獨特性質,此金屬玻璃薄膜材料應用於醫療器材上極具潛力,像是抗菌鍍膜。故本研究是為利用磁控濺鍍鋯基(Zr53Cu33Al9Ta5)與銅基(Cu48Zr42Ti4Al6)金屬玻璃薄膜於矽基板和AISI 304不鏽鋼上,進而應用於醫療器械上,探討薄膜表面能、表面粗糙度、附著性等,更進一步進行抗菌性質之測試,評估其抑止細菌貼附表面及成長之機制。
相較於矽基板的水接觸角為48.8度,鋯基與銅基的水接觸角分別為119.5度及106.6度,可得知金屬玻璃薄膜之鍍覆可得到疏水性的表面改質。此一疏水表面特性於生醫材料上有極大的潛力作開發與應用。細菌及其他病原吸附於醫用材料表面是造成植入物感染的主因,其他在各類手術刀具之表面改質也相當可觀,一旦病原附著於材料表面,時間長了會生成一層薄的生物膜,文獻指出此生物膜必須使用比正常量多1000倍的抗生素甚至更多才能清除,故為避免此生物膜之形成,疏水之刀具或材料表面即相當重要!
此研究由變頻磁控濺鍍之金屬玻璃薄膜提供相當平滑的表面使病原無法附著於醫用材料表面,且腐蝕性佳,方便清洗及重複使用之特性,提供一病源無法附著的防禦力。由實驗結果可知,鋯基及銅基金屬玻璃薄膜皆具有顯著的抗菌效果。
金屬玻璃薄膜的抗菌機制也在此次研究的主要範疇,藉由微調日本工業標準(JIS Z 2801:2000),調整不同的抗菌實驗方法,比較各種實驗方法得到的結果後,初鍍膜的金屬玻璃薄膜表面最平滑且具有最低的表面能及最大的疏水性質,可避免與細菌剛反應就附著上,但若多次接觸甚至浸泡在含有細菌的溶液中時,試片會緩慢釋出金屬銅及鋯離子,進而與帶負電的細菌反應,造成細菌死亡。


Thin films metallic glasses (TFMG) have demonstrated tremendous potential due to their high strength, high toughness, good corrosion, abrasion resistances, smooth surface and thermal plasticity. These materials are thus potentially useful for the medical application such as antibacterial coatings. In this work, Zr-based (Zr53Cu33Al9Ta5) and Cu-based (Cu48Zr42Ti4Al6) TFMGs was deposited on Si wafer and AISI 304 stainless steel via magnetron sputtering. We then evaluated the microstructure, surface roughness, amorphization and antibacterial properties of the thin films.
As compared to 48.8° on the bare Si wafer, the water contact angles of 119.5° and 106.6° for Zr- and Cu-based TFMGs, respectively, reveal the hydrophobic characteristic of the coated surfaces. The adhesion of bacteria to biomaterial surfaces is the main reason for implant-associated infection. Bacteria adhered to material surfaces for an extended period forms a biofilm. In this study, TFMG deposited has provided smooth surfaces to which bacteria would not easily attach so the mechanisms for resistance effects of TFMG to bacterial adherence are proposed. Furthermore, the bacterial adhesion of E. coli and S. aureus to both Zr-based and Cu-based TFMGs is hindered to different extents.

摘要 I Abstract II Acknowledgements III Outline IV List of Tables VII List of Figures VIII Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Biofilm on Biomaterials 3 2.2 Application of AISI Stainless Steels in Medical Area 5 2.3 Bulk Metallic Glass (BMG) and Thin Film Metallic Glass (TFMG) 6 2.3.1 The Evaluation of Metallic Glasses 6 2.3.2 Physical and Mechanic Properties of MGs 8 2.3.3 Application for Medical Area 13 2.4 Thin Film Deposition Using Physical Vapor Deposition (PVD) 20 2.5 Surface Modification for Antimicrobial Property 22 2.6 Antibacterial Testing for Solid Material - JIS Z 2801:2000 26 Chapter 3 Experimental Procedure 29 3.1 Preparation of TFMG 30 3.1.1 Target Preparation 30 3.1.2 Deposition of TFMG 30 3.2 Material Characterizations 33 3.2.1 Chemical Analyses-Electron Probe Microanalysis (EPMA) 33 3.2.2 Differential Scanning Calorimeter (DSC) 33 3.2.3 X-ray Diffractometer (XRD) 34 3.2.4 Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS) 35 3.2.5 Dual Beam Focus Ion Beam (DB-FIB) 36 3.2.6 Transmission Electron Microscopy (TEM) 37 3.2.7 Argon Plasma for Etching 38 3.2.8 Atomic Force Microscopy (AFM) 38 3.3 Antibacterial Test 40 3.4 Immersion Tests (ICP-MS) 47 3.5 Contact Angle and Surface Energy Measurement 47 Chapter 4 Results and Discussion 50 4.1 Chemical Composition (EPMA) 50 4.2 Thermal Analysis (DSC) of TFMGs 51 4.3 Crystallography (XRD) 52 4.4 Microstructure Analysis 53 4.4.1 DB-FIB 53 4.4.2 TEM 54 4.4.3 AFM 55 4.5 Ion Releasing Test/ EDS 56 4.6 Contact Angle Measurement for Surface Free Energy of TFMGs 58 4.7 Antibacterial Properties on Coated Samples 62 4.8 Antibacterial Property with Different Surface Roughnesses 63 4.9 Various Antibacterial Tests 64 4.10 Possible Mechanisms of Antibacterial Effect 74 Chapter 5 Summaries and Future Works 76 5.1 Summaries 76 5.2 Future Works 76 References 77

[1] J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, et al., "Thin film metallic glasses: Unique properties and potential applications," Thin Solid Films, vol. 520, pp. 5097-5122, 2012.
[2] A. Inoue, H. Kimura, K. Sasamori, and T. Masumoto, "Ultrahigh strength of rapidly solidified Al96-xCr3Ce1Cox," Materials transactions-JIM, vol. 35, pp. 85-94, 1994.
[3] Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, "Deformation behavior of Zr65Al10Ni10Cu15 glassy alloy with wide supercooled liquid region," Applied Physics Letters, vol. 69, p. 1208, 1996.
[4] A. L. Greer, "Metallic glasses," Science (New York, NY), vol. 267, p. 1947, 1995.
[5] B. Zberg, P. J. Uggowitzer, and J. F. Löffler, "MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants," Nature Materials, vol. 8, pp. 887-891, 2009.
[6] Y. B. Wang, X. H. Xie, H. F. Li, X. L. Wang, M. Z. Zhao, E. W. Zhang, et al., "Biodegradable CaMgZn bulk metallic glass for potential skeletal application," Acta Biomater, vol. 7, pp. 3196-208, Aug 2011.
[7] L. Huang, Z. Cao, H. M. Meyer, P. K. Liaw, E. Garlea, J. R. Dunlap, et al., "Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness," Acta Biomater, vol. 7, pp. 395-405, Jan 2011.
[8] W. He, A. Chuang, Z. Cao, and P. K. Liaw, "Biocompatibility Study of Zirconium-Based Bulk Metallic Glasses for Orthopedic Applications," Metallurgical and Materials Transactions A, vol. 41, pp. 1726-1734, 2010.
[9] P. T. Chiang, G. J. Chen, S. R. Jian, Y. H. Shih, J. S. C. Jang, and C. H. Lai, "Surface Antimicrobial Effects of Zr61Al7. 5Ni10Cu17. 5Si4 Thin Film Metallic Glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans," Fooyin Journal of Health Sciences, vol. 2, pp. 12-20, 2010.
[10] W. Shao and Q. Zhao, "Effect of corrosion rate and surface energy of silver coatings on bacterial adhesion," Colloids Surf B Biointerfaces, vol. 76, pp. 98-103, Mar 1 2010.
[11] Q. Feng, J. Wu, G. Chen, F. Cui, T. Kim, and J. Kim, "A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus," Journal of biomedical materials research, vol. 52, pp. 662-668, 2000.
[12] M. Katsikogianni and Y. Missirlis, "Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria–material interactions," Eur. Cell Mater, vol. 8, pp. 37-57, 2004.
[13] K. H. Liao, K. L. Ou, H. C. Cheng, C. T. Lin, and P. W. Peng, "Effect of silver on antibacterial properties of stainless steel," Applied Surface Science, vol. 256, pp. 3642-3646, 2010.
[14] C. C. T., J. H. Hsieh, Y. K. Chang, S. Y. Chang, W. Wu, " Antibacterial behavior of TaN–Ag nanocomposite thin films with and without annealing."
[15] P. C. Liu, J. H. Hsieh, C. Li, Y. K. Chang, and C. C. Yang, "Dissolution of Cu nanoparticles and antibacterial behaviors of TaN–Cu nanocomposite thin films," Thin Solid Films, vol. 517, pp. 4956-4960, 2009.
[16] Y. J. Chang, C. L. Li, J. W. Lee, F. B. Wu, and L. C. Chang, "Evaluation of antimicrobial abilities of Cr2N/Cu multilayered thin films," Thin Solid Films, vol. 518, pp. 7551-7556, 2010.
[17] Z. G. Dan, H. W. Ni, B. F. Xu, J. Xiong, and P. Y. Xiong, "Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions," Thin Solid Films, vol. 492, pp. 93-100, 2005.
[18] Y. H. Kim, Y. R. Choi, K. M. Kim, and S. Y. Choi, "Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties," Applied Surface Science, vol. 258, pp. 3823-3828, 2012.
[19] C. A. Fux, P. Stoodley, L. Hall-Stoodley, and J. W. Costerton, "Bacterial biofilms: a diagnostic and therapeutic challenge," Expert review of anti-infective therapy, vol. 1, pp. 667-683, 2003.
[20] P. S. Stewart and J. William Costerton, "Antibiotic resistance of bacteria in biofilms," The Lancet, vol. 358, pp. 135-138, 2001.
[21] L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, "Bacterial biofilms: from the natural environment to infectious diseases," Nature Reviews Microbiology, vol. 2, pp. 95-108, 2004.
[22] P. Stoodley, K. Sauer, D. Davies, and J. W. Costerton, "Biofilms as complex differentiated communities," Annual Reviews in Microbiology, vol. 56, pp. 187-209, 2002.
[23] Y. H. An and R. J. Friedman, "Concise review of mechanisms of bacterial adhesion to biomaterial surfaces," Journal of biomedical materials research, vol. 43, pp. 338-348, 1998.
[24] A. W. Smith, "Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems?," Advanced drug delivery reviews, vol. 57, pp. 1539-1550, 2005.
[25] E. M. Hetrick and M. H. Schoenfisch, "Reducing implant-related infections: active release strategies," Chemical Society Reviews, vol. 35, pp. 780-789, 2006.
[26] P. Kingshott, J. Wei, D. Bagge-Ravn, N. Gadegaard, and L. Gram, "Covalent attachment of poly (ethylene glycol) to surfaces, critical for reducing bacterial adhesion," Langmuir, vol. 19, pp. 6912-6921, 2003.
[27] H. J. Kaper, H. J. Busscher, and W. Norde, "Characterization of poly (ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis," Journal of Biomaterials Science, Polymer Edition, vol. 14, pp. 313-324, 2003.
[28] T. Maki, "Stainless steel: progress in thermomechanical treatment," Current Opinion in Solid State and Materials Science, vol. 2, pp. 290-295, 1997.
[29] B. S. Suh and W. J. Lee, "Surface hardening of AISI 316L stainless steel using plasma carburizing," Thin Solid Films, vol. 295, pp. 185-192, 1997.
[30] F. El-Hossary and N. Negm, "Composition structure and magnetisation of RF plasma nitrided 304 stainless steel," Applied surface science, vol. 181, pp. 185-190, 2001.
[31] K. Abou-El-Hossein and Z. Yahya, "High-speed end-milling of AISI 304 stainless steels using new geometrically developed carbide inserts," Journal of materials processing technology, vol. 162, pp. 596-602, 2005.
[32] F. Nascimento, C. Lepienski, C. Foerster, A. Assmann, S. da Silva, C. d. M. Siqueira, et al., "Structural, mechanical, and tribological properties of AISI 304 and AISI 316L steels submitted to nitrogen–carbon glow discharge," Journal of materials science, vol. 44, pp. 1045-1053, 2009.
[33] N. Lopez, M. Cid, and M. Puiggali, "Influence of o-phase on mechanical properties and corrosion resistance of duplex stainless steels," Corrosion Science, vol. 41, pp. 1615-1631, 1999.
[34] A. F. Padilha, I. F. Machado, and R. L. Plaut, "Microstructures and mechanical properties of Fe–15% Cr–15% Ni austenitic stainless steels containing different levels of niobium additions submitted to various processing stages," Journal of materials processing technology, vol. 170, pp. 89-96, 2005.
[35] M. Willis, A. McDonaugh-Smith, and R. Hales, "Prestrain effects on creep ductility of a 316 stainless steel light forging," International journal of pressure vessels and piping, vol. 76, pp. 355-359, 1999.
[36] I. Campos-Silva, N. López-Perrusquia, J. Martínez-Trinidad, A. Avilés, E. Alvárez-Castañeda, and S. Juárez-Torres, "Evaluation of brittle layers obtained by boriding on AISI H13 steels," Advanced Materials Research, vol. 65, pp. 47-52, 2009.
[37] R. O. Darouiche, "Treatment of infections associated with surgical implants," New England Journal of Medicine, vol. 350, pp. 1422-1429, 2004.
[38] J. I. Flock and F. Brennan, "Antibodies that block adherence of Staphylococcus aureus to fibronectin," Trends in microbiology, vol. 7, pp. 140-141, 1999.
[39] Q. Zhao, Y. Liu, C. Wang, and S. Wang, "Evaluation of bacterial adhesion on Si-doped diamond-like carbon films," Applied surface science, vol. 253, pp. 7254-7259, 2007.
[40] H. W. Choi, R. H. Dauskardt, S. C. Lee, K. R. Lee, and K. H. Oh, "Characteristic of silver doped DLC films on surface properties and protein adsorption," Diamond and Related Materials, vol. 17, pp. 252-257, 2008.
[41] S. Kwok, W. Zhang, G. Wan, D. McKenzie, M. Bilek, and P. K. Chu, "Hemocompatibility and anti-bacterial properties of silver doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc deposition," Diamond and related materials, vol. 16, pp. 1353-1360, 2007.
[42] Z. Dan, H. Ni, B. Xu, J. Xiong, and P. Xiong, "Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions," Thin Solid Films, vol. 492, pp. 93-100, 2005.
[43] I. Hong and C. H. Koo, "Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel," Materials Science and Engineering: A, vol. 393, pp. 213-222, 2005.
[44] J. De Damborenea, A. Cristóbal, M. Arenas, V. López, and A. Conde, "Selective dissolution of austenite in AISI 304 stainless steel by bacterial activity," Materials Letters, vol. 61, pp. 821-823, 2007.
[45] Q. Zhao, Y. Liu, C. Wang, and S. Wang, "Bacterial adhesion on silicon-doped diamond-like carbon films," Diamond and related materials, vol. 16, pp. 1682-1687, 2007.
[46] Q. Zhao, "Effect of surface free energy of graded NI–P–PTFE coatings on bacterial adhesion," Surface and Coatings Technology, vol. 185, pp. 199-204, 2004.
[47] D. Dowling, A. Betts, C. Pope, M. McConnell, R. Eloy, and M. Arnaud, "Anti-bacterial silver coatings exhibiting enhanced activity through the addition of platinum," Surface and coatings Technology, vol. 163, pp. 637-640, 2003.
[48] J. Noyce, H. Michels, and C. Keevil, "Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment," Journal of Hospital Infection, vol. 63, pp. 289-297, 2006.
[49] C. J. Kubin, "Antimicrobial control programs," in Seminars in perinatology, pp. 379-386, 2002.
[50] S. Cornelissen, A. Botha, W. Conradie, and G. Wolfaardt, "Shifts in community composition provide a mechanism for maintenance of activity of soil yeasts in the presence of elevated copper levels," Canadian journal of microbiology, vol. 49, pp. 425-432, 2003.
[51] R. Rajapaksha, M. Tobor-Kapłon, and E. Bååth, "Metal toxicity affects fungal and bacterial activities in soil differently," Applied and Environmental Microbiology, vol. 70, pp. 2966-2973, 2004.
[52] V. Madison, J. Duca, F. Bennett, S. Bohanon, A. Cooper, M. Chu, et al., "Binding affinities and geometries of various metal ligands in peptide deformylase inhibitors," Biophysical chemistry, vol. 101, pp. 239-247, 2002.
[53] N. Ballatori, "Transport of toxic metals by molecular mimicry," Environmental Health Perspectives, vol. 110, p. 689, 2002.
[54] W. Klement, R. H. Willens, P. Duwez, Nature, "Non-crystalline Structure in Solidified Gold–Silicon Alloys," Nature, vol. 187, p. 869, 1960.
[55] H. W. Kui and D.Turnbull, "Melting of Ni40Pd40P20 glass," Applied Physics Letters, vol. 47, p. 796, 1985.
[56] H. W. Kui, A. L.Greer, and D.Turnbull, "Formation of bulk metallic glass by fluxing," Applied Physics Letters, vol. 45, p. 615, 1984.
[57] A.Inoue and A.Takeuchi, "Recent development and application products of bulk glassy alloys," Acta Materialia, vol. 59, pp. 2243-2267, 2011.
[58] J. Chu, C. Chiang, H. Wijaya, R. Huang, C. Wu, B. Zhang, et al., "Compressive deformation of a bulk Ce-based metallic glass," Scripta materialia, vol. 55, pp. 227-230, 2006.
[59] A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys," Acta Materialia, vol. 48, p. 279, 2000.
[60] E. Axinte, "Metallic glasses from “alchemy” to pure science: Present and future of design, processing and applications of glassy metals," Materials & Design, vol. 35, pp. 518-556, 2012.
[61] R. B. S. a. W. L. Johnson, "Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals," Physical Review Letters, vol. 51, p. 415, 1983.
[62] K. S. S. Hata, A. Shimokohbe, "Fabrication of thin film metallic glass and its application to microactuator," SPIE International Symposium on Microelectronics and Micro-Electro-Mechanical Systems, MICRO/MEMS, vol. 3892, p. 97, 1999.
[63] S. H. Y. Liu, K. Wada, and A. Shimokohbe, "Three-dimensional Micro-forming Process of Thin Film Metallic Glass in the Supercooled Liquid Region," Proceedings of the 14th IEEE International Conference on Micro Electro and Mechanical Systems; Interlaken, Switzerland, p. 37, 2001.
[64] N. K. P. Sharma, H. Kimura, Y. Saotome, A. Inoue, "Nano-fabrication with metallic glass-an exotic material for nano-electromechanical systems," Nanotechnology, vol. 18, p. 035302, Jan 24 2007.
[65] J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, et al., "Annealing-induced full amorphization in a multicomponent metallic film," Physical Review B, vol. 69, 2004.
[66] C. T. Liu, Jinn P. Chu, Yi-Kun Fang, and Bao-Shan Han, "On annealing-induced amorphization and anisotropy in a ferromagnetic Fe-based film: A magnetic and property study," Applied Physics Letters, vol. 88, p. 012510, 2006.
[67] C. Y. W., J. P. Chu, L. J. Chen, Q. Chen, "Annealing-induced amorphization in a sputtered glass-forming film: In-situ transmission electron microscopy observation," Surface and Coatings Technology, vol. 205, p. 2914, 2011.
[68] W. S. L., Z. F. Li, and B. X. Liu, "Proposed interpretation for possible solid-state amorphization in some Cu-based binary metal systems," Applied Physics Letters, vol. 77, p. 3920, 2000.
[69] N. F. D. Wu, C. Sun, X, Zhanga, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Applied Physics Letters, vol. 83, p. 201, 2003.
[70] X. Zhang, X. Huang, L. Jiang, Y. Ma, A. Fan, and B. Tang, "Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel," Applied Surface Science, vol. 258, pp. 1399-1404, 2011.
[71] D. H. Song, S. H. Uhm, S. B. Lee, J. G. Han, and K. N. Kim, "Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering," Thin Solid Films, vol. 519, pp. 7079-7085, 2011.
[72] J. Fu, J. Ji, D. Fan, and J. Shen, "Construction of antibacterial multilayer films containing nanosilver via layer‐by‐layer assembly of heparin and chitosan‐silver ions complex," Journal of Biomedical Materials Research Part A, vol. 79, pp. 665-674, 2006.
[73] C. Chung, H. Lin, and J. He, "Antimicrobial efficacy of photocatalytic TiO< sub> 2</sub> coatings prepared by arc ion plating," Surface and Coatings Technology, vol. 202, pp. 1302-1307, 2007.
[74] Y. C. Kuo, J. W. Lee, C. J. Wang, and Y. J. Chang, "The effect of Cu content on the microstructures, mechanical and antibacterial properties of Cr–Cu–N nanocomposite coatings deposited by pulsed DC reactive magnetron sputtering," Surface and Coatings Technology, vol. 202, pp. 854-860, 2007.
[75] C. Hu, Z. Xu, and M. Xia, "Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism," Veterinary microbiology, vol. 109, pp. 83-88, 2005.
[76] M. Wang and W.-X. Wang, "Cadmium toxicity in a marine diatom as predicted by the cellular metal sensitive fraction," Environmental science & technology, vol. 42, pp. 940-946, 2008.
[77] T. Yuranova, A. Rincon, A. Bozzi, S. Parra, C. Pulgarin, P. Albers, et al., "Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver," Journal of Photochemistry and Photobiology A: Chemistry, vol. 161, pp. 27-34, 2003.
[78] G. Grass, C. Rensing, and M. Solioz, "Metallic copper as an antimicrobial surface," Applied and environmental microbiology, vol. 77, pp. 1541-1547, 2011.
[79] J. S. Association and Z. JIS, "2801: 2000 Antimicrobial products–Test for antimicrobial activity and efficacy," in Japanese Standards Association, Tokyo, Japan, ed, 2000.
[80] C. Van Oss, R. Good, and M. Chaudhury, "Additive and nonadditive surface tension components and the interpretation of contact angles," Langmuir, vol. 4, pp. 884-891, 1988.
[81] D. K. Owens and R. Wendt, "Estimation of the surface free energy of polymers," Journal of Applied Polymer Science, vol. 13, pp. 1741-1747, 1969.
[82] Q. Zhao and Y. Liu, "Modification of stainless steel surfaces by electroless Ni-P and small amount of PTFE to minimize bacterial adhesion," Journal of Food Engineering, vol. 72, pp. 266-272, 2006.
[83] A. K. Chatterjee, R. K. Sarkar, A. P. Chattopadhyay, P. Aich, R. Chakraborty, and T. Basu, "A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli," Nanotechnology, vol. 23, p. 085103, 2012.
[84] Jia-Hong Chu, "Microstructure, Thermal, Mechanical and Antimicribial Properties in Zr-Cu-Ni-Al Thin Film Metallic Glass via Processing Temperature Control." Master thesis in Tsing Hua University, 2013.

無法下載圖示 全文公開日期 2018/07/30 (校內網路)
全文公開日期 2033/07/30 (校外網路)
全文公開日期 2033/07/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE