簡易檢索 / 詳目顯示

研究生: 楊庭霽
Ting-Chi Yang
論文名稱: 含金剛烷及苯環側基聚醯亞胺之介電性質研究
Study on Dielectric Properties of Polyimides Containing Adamantyl and Phenyl Side Groups
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 曾文祺
Wen-Chi Tseng
華沐怡
Mu-Yi Hua
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 金剛烷聚醯亞胺高頻絕緣材料損耗因數
外文關鍵詞: Adamantane, Polyimide, High-frequency insulating materials, Dissipation factor
相關次數: 點閱:230下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究合成含金剛烷、苯環側基之兩種二胺單體1,4-Bis(4-aminophenoxy)-2-Adamantylbenzene(AP/NH2)及2-(1-Adamantyl)-1,4-bis(4-aminophenoxy)-5-phenylbenzene (2,5-APH/NH2)與三種酸酐:1,4-Phenylene bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylate) (TAHQ)、3,3',4,4'-Biphenyltetracarboxylic dianhydride (BPDA)、4,4'-Hexafluoroisopropylidene daphthalic dianhydride (6FDA)進行聚縮合反應合成聚醯亞胺(PI),所合成聚醯胺酸之固有黏度範圍1.56~6.65 dL/g之間,均可塗佈成具有韌性之薄膜;這些MPI薄膜都具有良好的熱穩定性,它們的玻璃轉換溫度(Tg) 在255~313°C之間,於氮氣下5%、10%重量損失溫度分別皆在435°C、463°C以上;這些MPI也具有好的機械性質,它們的抗張強度介於124~216 MPa,斷裂伸長率為 6.1~8.8%;MPI聚合物薄膜之吸水率介於0.06~0.27%之間;這些MPI聚合物也具有低的介電常數(Dk)與損耗因數(Df),在10 GHz下Dk值介於2.64~3.20之間,而Df值介於0.0064~0.0105之間。


In this study, the diamine monomers 1,4-Bis(4-aminophenoxy)-2-Adamantylbenzene(AP/NH2) containing adamantyl group and 2-(1-Adamantyl)-1,4-bis(4-aminophenoxy)-5-phenylbenzene (2,5-APH/NH2) containing adamantyl and phenyl side groups were synthesized. The polyimides (PIs) were synthesized by condensation polymerization from these two monomer, with three of anhydrides, 1,4-Phenylene bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylate) (TAHQ), 3,3',4,4'- Biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-Hexafluoroisopropylidene-daphthalic dianhydride (6FDA). The poly(amic-acid)s had inherent viscosities of 1.56~6.65 dL/g, and could form tough and flexible films. The MPIs exhibited high thermal stability with the glass transition temperature (Tg) was in the range of 255~313°C, and 5wt%、10 wt% decomposition temperature were above 435°C and 463°C in nitrogen, respectively. Moreover, the polyimide films exhibited good mechanical properties with tensile strengths between 124~216 MPa and elongation at breaks of 6.1~8.8%. The water uptake of MPIs were between 0.06~0.27%. These MPIs also had low dielectric constant (Dk) and low dissipation factor (Df). The Dk and Df of PIs at 10 GHz were 2.64~3.24 and 0.0064~0.0105, respectively.

摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 IX 第1章 緒論 1 1.1 前言 1 1.2 聚醯亞胺(Polyimide, PI) 3 1.2.1 改質型聚醯亞胺 6 1.3 液晶聚合物 (Liquid-crystal polymer, LCP) 8 第二章 文獻回顧 9 2.1 介電損失之影響因素 9 2.1.1 介電常數 9 2.1.2 損耗因數 14 2.2 低介電聚醯亞胺 18 2.2.1 含金剛烷之聚醯亞胺 20 2.2.2 含苯環側基之聚醯亞胺 22 2.2.3 含氟取代基之聚醯亞胺 25 2.3 研究動機 27 第3章 實驗 30 3.1 實驗程序 30 3.1.1 藥品 30 3.1.2 單體合成 33 3.1.3 聚醯亞胺薄膜合成 34 3.2 聚合物之物性與化性分析 36 3.2.1 傅立葉紅外線光譜分析 (FTIR) 36 3.2.2 固有黏度測試 36 3.2.3 萬能材料試驗機 (Universal Testing Machine) 37 3.2.4 熱重分析儀 (TGA) 37 3.2.5 熱示差掃描分析儀 (DSC) 37 3.2.6 吸濕率測試 (Water uptake) 38 3.2.7 介電性質測量 38 第4章 結果與討論 39 4.1 PIs之合成 39 4.2 熱性質分析 43 4.3 機械性質測量 48 4.4 吸濕性測試 49 4.5 介電性質分析 51 結論 55 參考文獻 56

1. Ohya, H., V. Kudryavsev, and S.I. Semenova, Polyimide membranes: applications, fabrications and properties. 1997: CRC Press.
2. Sroog, C., Polyimides. Progress in Polymer Science, 1991. 16(4): p. 561-694.
3. Sroog, C., History of the invention and development of the polyimides, in Polyimides fundamentals and applications. 2018, CRC Press. p. 1-6.
4. Simpson, J. and A.S. Clair, Fundamental insight on developing low dielectric constant polyimides. Thin Solid Films, 1997. 308: p. 480-485.
5. Zhang, Y. and W. Huang, Soluble and Low-κ Polyimide Materials, in Advanced Polyimide Materials. 2018, Elsevier. p. 385-463.
6. Bai, L., L. Zhai, M. He, C. Wang, S. Mo, and L. Fan, Preparation of heat-resistant poly (amide-imide) films with ultralow coefficients of thermal expansion for optoelectronic application. Reactive and Functional Polymers, 2019. 141: p. 155-164.
7. Yang, Z., P. Ma, F. Li, H. Guo, C. Kang, and L. Gao, Ultrahigh thermal-stability polyimides with low CTE and required flexibility by formation of hydrogen bonds between poly (amic acid) s. European Polymer Journal, 2021. 148: p. 110369.
8. Lian, M., X. Lu, and Q. Lu, Synthesis of superheat-resistant polyimides with high T g and low coefficient of thermal expansion by introduction of strong intermolecular interaction. Macromolecules, 2018. 51(24): p. 10127-10135.
9. Zou, G., H. Gronqvist, J.P. Starski, and J. Liu, Characterization of liquid crystal polymer for high frequency system-in-a-package applications. IEEE Transactions on Advanced Packaging, 2002. 25(4): p. 503-508.
10. Chen, J., M. Zeng, Z. Feng, T. Pang, Y. Huang, and Q. Xu, Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultralow dielectric losses. ACS Applied Polymer Materials, 2019. 1(4): p. 625-630.
11. Wolff, E.A. and R. Kaul, Microwave engineering and systems applications. 1988: Wiley New York.
12. Chen, Y.-C., Y.-C. Lin, E.-C. Chang, C.-C. Kuo, M. Ueda, and W.-C. Chen, Investigation of the structure–dielectric relationship of polyimides with ultralow dielectric constant and dissipation factors using density functional theory. Polymer, 2022. 256: p. 125184.
13. Ahmad, Z., Polymer dielectric materials, in Dielectric material. 2012, IntechOpen.
14. Song, N., H. Yao, T. Ma, T. Wang, K. Shi, Y. Tian, B. Zhang, S. Zhu, Y. Zhang, and S. Guan, Decreasing the dielectric constant and water uptake by introducing hydrophobic cross-linked networks into co-polyimide films. Applied Surface Science, 2019. 480: p. 990-997.
15. Lee, C., Y. Shul, and H. Han, Dielectric properties of oxydianiline‐based polyimide thin films according to the water uptake. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(19): p. 2190-2198.
16. Peng, W., H. Lei, L. Qiu, F. Bao, and M. Huang, Perfluorocyclobutyl-containing transparent polyimides with low dielectric constant and low dielectric loss. Polymer Chemistry, 2022. 13(26): p. 3949-3955.
17. Bei, R., C. Qian, Y. Zhang, Z. Chi, S. Liu, X. Chen, J. Xu, and M.P. Aldred, Intrinsic low dielectric constant polyimides: relationship between molecular structure and dielectric properties. Journal of Materials Chemistry C, 2017. 5(48): p. 12807-12815.
18. Chen, W., Z. Zhou, T. Yang, R. Bei, Y. Zhang, S. Liu, Z. Chi, X. Chen, and J. Xu, Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety. Reactive and Functional Polymers, 2016. 108: p. 71-77.
19. Li, J., H. Zhang, F. Liu, J. Lai, H. Qi, and X. You, A new series of fluorinated alicyclic-functionalized polyimides derivated from natural-(D)-camphor: Synthesis, structure–properties relationships and dynamic dielectric analyses. Polymer, 2013. 54(21): p. 5673-5683.
20. Chern, Y.-T. and H.-C. Shiue, Low dielectric constants of soluble polyimides based on adamantane. Macromolecules, 1997. 30(16): p. 4646-4651.
21. Liaw, D.J. and B.Y. Liaw, Synthesis and characterization of new polyamides and polyimides prepared from 2, 2‐bis [4‐(4‐aminophenoxy) phenyl] adamantane. Macromolecular Chemistry and Physics, 1999. 200(6): p. 1326-1332.
22. Li, Y., G. Sun, Y. Zhou, G. Liu, J. Wang, and S. Han, Progress in low dielectric polyimide film–A review. Progress in Organic Coatings, 2022. 172: p. 107103.
23. Li, H., J. Liu, K. Wang, L. Fan, and S. Yang, Synthesis and characterization of novel fluorinated polyimides derived from 4, 4′-[2, 2, 2-trifluoro-1-(3, 5-ditrifluoromethylphenyl) ethylidene] diphthalic anhydride and aromatic diamines. Polymer, 2006. 47(4): p. 1443-1450.
24. Tao, L., H. Yang, J. Liu, L. Fan, and S. Yang, Synthesis and characterization of highly optical transparent and low dielectric constant fluorinated polyimides. Polymer, 2009. 50(25): p. 6009-6018.
25. Kuo, C.-C., Y.-C. Lin, Y.-C. Chen, P.-H. Wu, S. Ando, M. Ueda, and W.-C. Chen, Correlating the molecular structure of polyimides with the dielectric constant and dissipation factor at a high frequency of 10 GHz. ACS Applied Polymer Materials, 2020. 3(1): p. 362-371.
26. Griffiths, D.J., Introduction to electrodynamics. 2005, American Association of Physics Teachers.
27. Dang, Z.-M., Dielectric polymer materials for high-density energy storage. 2018: William Andrew.
28. Araki, H., Y. Kiuchi, A. Shimada, H. Ogasawara, M. Jukei, and M. Tomikawa. Low permittivity and dielectric loss polyimide with patternability for high frequency applications. in 2020 IEEE 70th Electronic Components and Technology Conference (ECTC). 2020. IEEE.
29. Tong, H., A. Ahmad, J. Fu, H. Xu, T. Fan, Y. Hou, and J. Xu, Revealing the correlation between molecular structure and dielectric properties of carbonyl‐containing polyimide dielectrics. Journal of Applied Polymer Science, 2019. 136(34): p. 47883.
30. Cheng, T., G. Lv, Y. Li, H. Yun, L. Zhang, Y. Deng, L. Lin, X. Luo, and J. Nan, Low Dielectric Polyimide/Fluorinated Ethylene Propylene (PI/FEP) Nanocomposite Film for High‐Frequency Flexible Circuit Board Application. Macromolecular Materials and Engineering, 2021. 306(7): p. 2100086.
31. Grill, A., S.M. Gates, T.E. Ryan, S.V. Nguyen, and D. Priyadarshini, Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects—State of the art. Applied Physics Reviews, 2014. 1(1): p. 011306.
32. Maier, G., Low dielectric constant polymers for microelectronics. Progress in polymer science, 2001. 26(1): p. 3-65.
33. Wang, L., C. Liu, S. Shen, M. Xu, and X. Liu, Low dielectric constant polymers for high speed communication network. Advanced Industrial and Engineering Polymer Research, 2020. 3(4): p. 138-148.
34. Mathews, A.S., I. Kim, and C.S. Ha, Fully aliphatic polyimides from adamantane‐based diamines for enhanced thermal stability, solubility, transparency, and low dielectric constant. Journal of applied polymer science, 2006. 102(4): p. 3316-3326.
35. Qian, Z., Z. Ge, Z. Li, M. He, J. Liu, Z. Pang, L. Fan, and S. Yang, Synthesis and characterization of new inherent photoimageable polyimides based on fluorinated tetramethyl-substituted diphenylmethanediamines. Polymer, 2002. 43(22): p. 6057-6063.
36. Liu, T.-Q., F. Zheng, X. Ma, T.-M. Ding, S. Chen, W. Jiang, S.-Y. Zhang, and Q. Lu, High heat-resistant polyimide films containing quinoxaline moiety for flexible substrate applications. Polymer, 2020. 209: p. 122963.
37. Liu, Y., J. Guo, J. Wang, X. Zhu, D. Qi, W. Li, and K. Shen, A novel family of optically transparent fluorinated hyperbranched polyimides with long linear backbones and bulky substituents. European Polymer Journal, 2020. 125: p. 109526.
38. Wang, C., S. Cao, W. Chen, C. Xu, X. Zhao, J. Li, and Q. Ren, Synthesis and properties of fluorinated polyimides with multi-bulky pendant groups. RSC advances, 2017. 7(42): p. 26420-26427.
39. Hougham, G., G. Tesoro, A. Viehbeck, and J. Chapple-Sokol, Polarization effects of fluorine on the relative permittivity in polyimides. Macromolecules, 1994. 27(21): p. 5964-5971.
40. 黃世杰, 裝備含金剛烷側鏈基團之新型聚醯亞胺及其性質研究. 台灣科技大學化工系碩士論文, 1998.
41. Luo, J., H. Tong, S. Mo, F. Zhou, S. Zuo, C. Yin, J. Xu, and X. Li, Integrated exploration of experimentation and molecular simulation in ester-containing polyimide dielectrics. RSC advances, 2023. 13(2): p. 963-972.

QR CODE