簡易檢索 / 詳目顯示

研究生: 楊仁毅
Jen-I Yang
論文名稱: 金屬改質天然鐵礦應用於流體化床式化學迴圈程序之研究
Study on the Application of Metal-Modified Iron Ore in a Fluidized-Bed Reactor for Chemical Looping Process
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
黃嘉宏
Chia-Hung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 135
中文關鍵詞: 化學迴圈載氧體天然鐵礦金屬助觸媒流體化床
外文關鍵詞: chemical-looping process, oxygen carrier, iron ore, metal-modified, fluidized bed
相關次數: 點閱:289下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究係以兩種鐵礦石AB(Australia B.H.P)與BC(Brazil CVRD)作為載氧體,應用於化學迴圈燃燒程序中,並以金屬改質(K、Na、Mg、Ca)載氧體,針對6種實驗變因(反應溫度、還原時間、金屬種類、金屬含量、燃料種類以及載氧體與燃料比)進行探討,期望提升二氧化碳的純度與產率,以做為後續封存與再利用之應用。
首先,由熱重分析儀(Thermogravimetric analyzer, TGA)初步進行反應性測試,探討反應溫度與金屬種類的影響,實驗結果顯示,提高反應溫度,有助於提升天然鐵礦石的氧化還原速率,而金屬改質的載氧體,除Mg之外其轉化速率皆有明顯的提升,特別是AB-K10與BC-Na10的反應性最佳。在流體化床反應器(Fluidized-bed reactor, FBR)系統,藉由理論計算其最小流體化速度及冷模的測試下,使用CO為燃料,使載氧體在流體化的狀態,進行5次氧化還原迴圈測試,亦顯示金屬改質的載氧體皆能有效的提升反應性,使用AB-K10、AB-Ca10、BC-Na10與BC-Ca10皆可獲得大於90%的CO2產率。接著測試其金屬含量的影響,將還原相態控制在Fe2O3與Fe3O4之間,使用AB-K5~15與AB-Ca15,皆能達到99%的純度與產率,進一步考慮應用成本及操作可行性,選用AB-K10(操作成本2.9 USD/ton•h)作為多次迴圈測試的載氧體。在連續操作50迴圈後,載氧體仍維持良好的反應性,且沒有明顯的聚集和去流體化的現象發生。然而,AB-K10應用於CH4燃料時,雖然其反應性較差,但在長時間還原時,添加水氣能有效抑制積碳現象,且隨著載氧體與燃料比值下降時,反應性也會有提高的現象,值得進一步探討。本實驗結果顯示,AB-K10具有化學迴圈商業化潛力。


In this work, two kinds of iron ore (AB and BC) were modified via wet impregnation method with using variant metal salts as effective oxygen carriers for chemical-looping combustion (CLC) process. Six experimental parameters, reaction temperature, reduction time, kind of metal, metal content, kind of fuel and ratio of oxygen carrier to fuel, were investigated for the improvement in the purity and yield of carbon dioxide, which plays an important role in the ultilization and stroage of CO2.
First, the effects of reaction temperature and the metal additives of iron ore on the redox activity were evaluated in a TGA system. The results showed the good redox rate can be increased with the increase in reaction temperature and using metal additives, except Mg. AB-K10 and BC-Na10 exhibited the best reactivity. In further FBR system, the minimum fluidization velocity(2 L/min at 25℃) was obtained by theoretical calculation and the cold model test. Then, five cycles of CLC reaction with using CO as fuel were carried out to test the activities of oxygen carriers. The results the purity and yield of CO2 were higher than 90% with using AB-K10, AB-Ca10, BC-Na10 and BC-Ca10. The highest purity and tield of crbon dioxide can be achieved with using AB-K5, AB-K10, AB-K15 and AB-Ca15, respectively. On the basis of cost and life time of oxygen carrier, we choose AB-K10 with the operation cost of 2.9 USD/ton•h for multi-cycle test. After 50 CLC cycles, the result showed AB-K10 maintains good reactivity, without obvious aggregation and defluidized phenomenon. However, AB-K10 showed the lower reactivity as the methane is used as fuel. In this system, the increase in time and partial pressure of CH4 and improve the purity and yield of carbon dioxide. In addition, the carbon deposition on oxygen carrier can be avoided in the presence of steam. From the above discussion, AB-K10 is a practical oxygen carrier for chemical looping combustion process.

摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 化學迴圈燃燒程序 3 1.3 載氧體 5 1.4 研究動機 7 第二章 文獻回顧 8 2.1 氣態燃料應用於化學迴圈 8 2.2 固態燃料應用於化學迴圈 13 2.3 液態燃料應用於化學迴圈 23 2.4 金屬改質載氧體應用於化學迴圈 24 2.5 化學迴圈應用於產氫程序 28 第三章 研究方法 30 3.1 實驗規劃 30 3.2 實驗藥品 31 3.3 實驗儀器 31 3.4 藥品配置 35 3.4.1 鐵礦前處理 35 3.4.2 製備金屬改質載氧體 35 3.5 實驗步驟 36 3.5.1 熱重分析儀反應系統 36 3.5.2 流體化床反應器 37 第四章 結果與討論 40 4.1 載氧體的性質分析 40 4.1.1 鐵系載氧體的反應機制 40 4.1.2 成分分析 43 4.1.3 晶相結構分析 44 4.1.4 比表面積與表面形貌分析 46 4.2 熱重分析儀反應性測試 50 4.2.1 不同溫度對原始礦石反應性的影響 51 4.2.2 不同金屬改質載氧體對反應性的影響 55 4.2.3 重量損失探討 58 4.3 流體化床反應器反應性測試 60 4.3.1 溫度影響 64 4.3.2 還原程度影響 65 4.3.3 金屬改質影響 71 4.3.4 金屬含量效應 80 4.3.5 多次迴圈反應性測試 89 4.4 甲烷反應性測試 94 4.4.1 AB-K10應用在甲烷燃料的反應行為 95 4.4.2 載氧體與燃料比的影響 97 4.4.3 添加水氣的影響 98 第五章 結論與未來展望 105 5.1 結論 105 5.2 未來與展望 108 第六章 參考文獻 111

[1] U.S. Energy Information Administration, “2010 world marketed energy use”, Report: DOE/EIA-0484 (2010).
[2] Hardin L,; Payne, J., “Carbon Management”, Oak Ridge National Laboratory Rivew, 2, pp. 12-13 (2000).
[3] Fan, L. S., “Chemical looping systens for fossil energy conversions”, Hoboken, New Jersey Published simultaneously in Canada:John Wiley & Sons (2010).
[4] 朱敬平, “化學迴圈燃燒技術發展現況簡介”, 中興工程季刊, 第110期, pp. 63-72 (2011).
[5] Ennenbach, F.; Kluger, K., “Challenges for 2nd generation technologies like chemical and carbonate looping from an industry point of view”, 2nd International Conference of Chemical Looping, Darmstadt, Germany (2012).
[6] Kyeongsook, K.; Seugran, Y.; Jeom, I. B.; Chong, K. R.; Mihwa, C.; Yinsheng, H.; Keesam, S.; Gaeho, L., “New fabrication of mixed oxygen carrier for CLC: Sludge and scale from a power plant”, Fuel 111, pp. 496-504 (2013).
[7] Bao, J.; Liu, W.; Cleeton, J. P. E.; Scott, S. A.; Dennis, J. S.; Li, Z.; Cai, N., “Interaction between Fe-based oxygen carriers and n-heptane during chemical looping combustion”, Proceedings of the Combustion Institute, 34, pp. 2839-2846 (2013).
[8] Michael, J. T.; Barnes, P. A.; Gareth, M. B. P., “Reduction of iron oxide catalysts: The investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques”, Journal of Physical Chemistry B, 105, pp. 220-228 (2001).
[9] Gayán, P.; Cabello, A.; Labiano, F. G.; Abad, A.; de Diego, L. F.; Adanez, J., “Performance of a low Ni content oxygen carrier for fuel gas combustion in a continuous CLC unit using a CaO/Al2O3 system as support”, International Journal of Greenhouse Gas Control., 14, pp. 209-219 (2013).
[10] Dewaele, O.; Froment, G. F., “TAP study of the mechanism and kinetics of the adsorption and combustion of methane on Ni/Al2O3 and NiO/Al2O3”, Journal of Catalysis, 184, pp. 499-513 (1999).
[11] Hedayati, A.; Azad, A. M.; Rydeń, M.; Leion, H.; Mattisson, T., “Evaluation of novel ceria-supported metal oxides as oxygen carriers for chemical-looping combustion”, Industrial & Engineering Chemical Research, 51, pp. 12796-12806 (2012).
[12] Johansson, M.; Mattisson, T.; Lyngfelt, A., “Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion”, Institution of Chemical Engineers Trans IChemE Part A, 84(A9), pp. 807-818 (2006).
[13] Berguerand, N.; Lind, F.; Israelsson, M.; Seemann, M.; Biollaz, S., “Use of nickel oxide as a catalyst for tar elimination in a chemical-looping reforming reactor operated with biomass producer gas”, Industrial & Engineering Chemical Research, 51, pp. 16610-16616 (2012).
[14] Arjmand, M.; Leion, H.; Lyngfelt, A.; Mattisson, T., “Use of manganese ore in chemical-looping combustion (CLC) - effect on steam gasification”, International Journal of Greenhouse Gas Control, 8, pp. 56-60 (2012).
[15] Lewis, K. W.; Gilliland, E. R.; Sweeney, M. P., “Gasification of carbon metal oxides in a fluidized powder bed”, Chemical Engineering Progress, 47, pp. 251-256 (1951).
[16] Keller, M.; Leion, H.; Mattisson, T.; Lyngfelt, A., “Gasification inhibition in chemical-looping combustion with solid fuels”, Combustion and Flame, 158, pp. 393-400 (2011).
[17] Brown, T. A.; Dennis, J. S.; Scott, S. A.; Davidson, J. F.; Hayhurst, A. N., “Gasification and chemical-looping combustion of a lignite char in a fluidized bed of iron oxide”, Energy and Fuels, 24, pp. 3034-3048 (2010).
[18] Everson, R. C.; Neomagus, H. W. J. P.; Kasaini, H.; Njapha, D.; “Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: gasification with carbon dioxide and steam”, Fuel, 85, pp. 1076-1082 (2006).
[19] Azimia, G.; Leiona, H.; Mattisson, T.; Lyngdelt, A., “Chemical-looping with oxygen uncoupling using combined Mn-Fe oxides, testing in batch fluidized bed”, Energy Procedia, 4, pp. 370-377 (2011).
[20] Mattisson, T.; Lyngfelt, A.; Leion, H., “Chemical-looping with oxygen uncoupling for combustion of solid fuels”, International Journal of Greenhouse Gas Control, 3, pp. 11-19 (2009).
[21] Bayham, S. C.; Kim, H. R.; Tong, D. W. A.; Zeng, L.; McGiveron, Omar.; Kathe, M. V.; Chung, E.; Wang, W.; Wang, A.; Majumder, A.; Fan, L. S., “Iron-based coal direct chemical looping combustion process: 200-h continuous operation of a 25-kWth subpilot unit”, Energy and Fuels, 27, pp. 1347-1356 (2013).
[22] Abad, A.; Rubio, I. A.; Gayán, P.; Labiano, F. G.; de Diego, L. F.; Adánez, J., “Demonstration of chemical-looping with oxygen uncoupling process in a 1.5 kWth continuously operating unit using a Cu-based oxygen-carrier”, International Journal of Greenhouse Gas Control, 6, pp. 189-200 (2012).
[23] LaRue, A. D.; Costanzo, M. A.; Fulmer, J. A.; Wohlwend, K. J., “Update of B&W’s low NOx burner experience”, Proceedings of the ASME International Joint Power Generation Conference, pp. 24-25 (2000).
[24] Song, T.; Shen, T.; Shen, L.; Xiao, J.; Gu, Haiming.; Zhang, S., “Evaluation of hematite oxygen carrier in chemical-looping combustion of coal”, Fuel, 104, pp. 244-252 (2013).
[25] Mendiara, T.; de Diego, L. F.; Labiano, F. G.; Gayán, P.; Abad, A.; Adánez, J., “Behaviour of a bauxite waste material as oxygen carrier in a 500 Wth CLC unit with coal”, International Journal of Greenhouse Gas Control, 17, pp. 170-182 (2013).
[26] Xiao, R.; Chen, L.; Saha, C.; Zhanga, S.; Bhattacharya, S., “Pressurized chemical looping combustion of coal using an iron ore as oxygen carrier in a pilot-scale unit”, International Journal of Greenhouse Gas Control, 10, pp. 363-373 (2012).
[27] Song, T.; Wu, J.; Zhang, H.; Shen, L., “Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal”, International Journal of Greenhouse Gas Control, 11, pp. 326-336 (2012).
[28] Shen, L.; Gao, Z.; Wu, J.; Xiao, J., “Sulfur behavior in chemical looping combustion with NiO/Al2O3 oxygen carrier”, Combustion and Flame, 157, pp. 853-863 (2010).
[29] Gu, H.; Shen, L.; Xiao, J.; Zhang, S.; Song, T.; Chen, D., “Evaluation of the effect of sulfur on iron-ore oxygen carrier in chemical-looping combustion”, Industrial & Engineering Chemical Research, 52, pp.1795-1805 (2013).
[30] Moldenhauer, P.; Rydén, M.; Mattisson, T.; Younes, M.; Lyngfelt, A., “The use of ilmenite as oxygen carrier with kerosene in a 300W CLC laboratory reactor with continuous circulation”, Applied Energy, 113, pp. 1846-1854 (2014).
[31] Bao, J.; Li, Z.; Cai, N., “Promoting the reduction reactivity of ilmenite by introducing foreign ions in chemical looping combustion”, Industrial & Engineering Chemical Research, 52, pp. 6119-6128 (2013).
[32] Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P., “Formation of hollow nanocrystals through the nanoscale kirkendall effect”, (2004), Retrieved from Lawrence Berkeley National Laboratory (web site: http://escholarship.org/uc/item/6v86p20z).
[33] Fan, H. J.; Gçsele, U.; Zacharias, M., “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review”, Small Journal, 3, pp. 1660-1671 (2007).
[34] Bao, J.; Li, Z.; Cai, N., “Reduction kinetics of foreign-ion-promoted ilmenite using carbon monoxide (CO) for chemical looping combustion”, Industrial & Engineering Chemical Research, 52, pp. 10646-10655 (2013).
[35] Yu, Z.; Li, C.; Fang, Y.; Huang, J.; Wang, Z., “Reduction rate enhancements for coal direct chemical looping combustion with an iron oxide oxygen carrier”, Energy and Fuels, 26, pp. 2505-2511 (2012).
[36] Song, T.; Shen, L.; Guo, W.; Chen, D.; Xiao, Jun., “Enhanced reaction performance with hematite/Ca2Al2SiO7 oxygen carrier in chemical looping combustion of coal”, Industrial & Engineering Chemical Research, 52, pp. 9573-9585 (2013).
[37] Haga, T.; Nishiyama, Y., “Influence of structural parameters on coal char gasification 2. Ni-catalysed steam gasification”, Fuel, 67, pp. 748-752 (1988).
[38] Kai, S.; Le, Q.; Zhang, T., “Separation of hydrogen from syngas using a chemical looping cycle”, Fuel, 98, pp. 80-87 (2012).
[39] Cho, W. C.; Seo, M. W.; Kim, S. D.; Kang, K. S.; Bae, K. K.; Kim, C. H.; Jeong, S. U.; Park, C. S., “Reactivity of iron oxide as an oxygen carrier for chemical-looping hydrogen production”, International Journal of Hydrogen energy, 37, pp. 16852-16863 (2012).
[40] Cho, W. C.; Lee, D. Y.; Seo, M. W.; Kim, S. D.; Kang, K. S.; Bae, K. K.; Kim, C. H.; Jeong, S. U.; Park, C. S., “Continuous operation characteristics of chemical looping hydrogen production system”, Applied Energy, 113, pp. 1667-1674 (2014).
[41] Wen, C. Y.; Yu, Y. H., “A generalized method for predicting the minimum fluidization velocity”, American Institute of Chemical Engineers Journal, 12, pp. 610-612 (1996).
[42] Fogler, H. S.; Gürmen, M. N., “Elements of chemical reaction engineering”, Diffusion and Reaction in Porous Catalysts (4th ed), US: Pearson Education (2005).
[43] 吳鉉智, “以Fe2O3載氧體於移動床燃料反應器應用化學迴圈程序處理不同燃料之可行性分析”,碩士論文,國立臺灣科技大學化學工程系 (2011).
[44] Azadi, P.; Otomo, J.; Hatano, H.; Oshima, Y.; Farnood, R.; “Interactions of supported nickel and nickel oxide catalysts with methane and steam at high temperatures”, Chemical Engineering Science, 66, pp. 4196-4202 (2011).
[45] Azadi, P.; Otomo, J.; Hatano, H.; Oshima, Y.; Farnood, R.; “Nickel oxide redox processes with oxide ion conductor-supported nickel oxide in dry and humidified methane: Effect of oxide ion conductors on induction period in nickel oxide reduction and subsequent hydrogen production”, Fuel, 104, pp. 691-697 (2013).
[46] Adánez, J.; Abad, A.; Labiano, F. G.; Gayán, P.; de Diego, L. F., “Progress in chemical-looping combustion and reforming technologies”, Progress in Energy and Combustion Science, 38, pp. 215-282 (2012).
[47] Johansson, M.; Mattisson, T.; Lyngfelt, A., “Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion”, Industrial & Engineering Chemical Research, 43, pp. 6978-6987 (2004).
[48] 洪桂彬, “石化燃料燃燒與全球CO2排放趨勢”, 瓦斯季刊, 第84期, pp. 8-28 (2000).

QR CODE