簡易檢索 / 詳目顯示

研究生: 張世翰
Shih-Han Chang
論文名稱: 以交聯式流體化床運行化學迴圈程序於溶劑處理之應用
Study on Chemical Looping Combustion of Disposing Waste Liquid in 1kWth Interconnected Fluidized Bed
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 192
中文關鍵詞: 化學迴圈程序交聯式流體床有機溶劑廢液
外文關鍵詞: chemical-looping combustion, interconnected fluidized bed, organic solvent waste
相關次數: 點閱:297下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學迴路程序為一新穎的燃燒系統,具有高效燃燒與分離二氧化碳的功能,其反應器系統的設計、載氧體流體化以及其與燃料接觸時間,均會影響反應效率。本研究以澳洲鐵礦石為載氧體,以實場廢液異丙醇與實場廢液石刻後殘留物消除劑為燃料,於1kWth之交聯式流體化床進行化學迴路程序。藉由改變載氧體運行量、燃料反應器、空氣反應器與密封迴路的氣體流量,在不同的溫度下進行化學迴路程序燃燒,同步量測各反應器內壓力分佈、提升管的壓力差以估算固體循環速率,並分析燃燒後尾氣的組成。此系統中空氣反應器為流化床形式,燃料反應器端為鼓泡床形式,載氧體在兩者間穩定運行以達到較高CO2選擇率。
    實驗結果顯示,氧化反應器空氣流量為 4.5 L/min與封閉迴路氮氣流量為 3.5 L/min時,燃料反應器分以液體流量 1 mL/min搭配氮氣流量5 L/min,以及液體流量4.5 mL/min搭配氮氣流量1L/min為最佳參數。影響操作程序的關鍵為液體的完全汽化,其原因為若氣流量的不足無法進行流體化導致載氧體深度還原引起燒結現象,最終系統堵塞。廢液轉化率達100%且CO2 選擇率與純度可高於80%。載氧體的磨耗特性顯示,天然鐵礦適合運用在交聯式流體化床,在5小時的運行中,磨損量為0.83 wt%,顯示其適用於液體為燃料之化學迴路程序。


    Chemical-Looping Combustion (CLC) process is a novel combustion system with the high combustion efficiency and able to separate CO2 from exhaust without extra energy consumptions. The reaction rate is deeply affected by the design of the reaction system, fluidization of the oxygen carrier, and the contact time between oxygen carrier and fuel. In this study, two kinds of liquid wastes isopropanol and EKC, were selected as fuel for chemical-looping combustion, which was carried out in the 1kWth interconnected fluidized bed with using Australian iron ore as oxygen carrier. The datum of pressure drop of each reactor were collected under variant operation conditions to estimate the solid circulation rate. The effect of gas flow rate of fuel reactor (FR), air reactor (AR), and loop seal (LS), solid inventory, reaction temperature, and kind of solvent waste on the composition of the exhaust gas were investigated.
    In this system, the air and fuel reactors were fast-fluidized bed and bubbling bed, respectively. The oxygen carriers were transported stably between these two reactors for achieving a high CO2 selectivity. The optimal operation parameters for high CO2 yield rate were obtained at 3.5 L/min of nitrogen to LS, 4.5 L/min to air of AR, and 5 L/min of nitrogen and 1 mL/min of solvent to FR. The maximum solvent feeding rate was 4.5 mL/min with 1 L/min of nitrogen as carrier gas. The vaporization of the liquid played the key role in this combustion process. The system will be defluidized resulted from the insufficient gas flow rate. The oxygen carrier was sintered due to the deep reduction in a dead zone. In conclusion, the complete decomposition of solvent waste was achieved with over 80% of CO2 selectivity and purity. The small attrition loss rate (0.83 wt% for 5h) of the oxygen carriers showed that the practicality of natural Australia iron ore for chemical-looping-combustion process.

    目錄 口試委員會審定書 # 誌謝 iii 中文摘要 v ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xiv 第一章 緒論 1 1.1 燃燒程序 2 1.2 研究動機 3 第二章 文獻回顧 5 2.1 化學迴圈燃燒程序 5 2.2 載氧體的選擇與性質 8 2.3 流體化現象 23 2.4 交聯式流體化床系統 26 2.5 反應器設計與種類 28 2.6 流體終端速度 34 2.7 系統壓力差量測 36 2.8 化學迴圈燃燒程序於交聯式流體化床 39 2.9 固體循環率 40 2.10 氣體隔絕率 42 2.11 化學迴圈燃燒程序於交聯式流體化床 45 2.11.1 氣體燃料之應用 45 2.11.2 液體燃料之應用 66 2.11.3 固體燃料之應用 76 第三章 研究方法 79 3.1 實驗規劃 79 3.2 實驗藥品 80 3.3 實驗儀器 81 3.4 交聯式流體化床系統 84 3.5 半套式流體化床系統 87 第四章 結果與討論 89 4.1 天然鐵礦物性分析 89 4.2 高溫爐體 92 4.2.1 元素分析 93 4.3 澳洲鐵礦實際最大攜氧量測試 94 4.4 有機溶劑物性分析 95 4.4.1 IPA水溶液分析 95 4.4.2 實場廢液分析 97 4.4.3 IPA與澳洲鐵礦載氧體之反應機制 98 4.4.4 澳洲鐵礦載氧體之理論最大攜氧量 100 4.5 半套式流體化床系統 101 4.5.1 IPA水溶液於半套式流體化床系統 102 4.5.2 實場IPA廢液於半套式流體化床系統 104 4.5.3 實場EKC廢液於半套式流體化床系統 107 4.6 交聯式流體化床之系統 111 4.6.1 空氣反應器氣流量設定與穩定性操作 112 4.6.2 低流量IPA水溶液之流體化參數與尾氣分析 120 4.6.3 高流量IPA水溶液之流體化參數與尾氣分析 127 4.6.4 實場IPA廢液之流體化參數與尾氣分析 134 4.6.5 實場EKC廢液之流體化參數與尾氣分析 144 4.7 固體循環率 155 4.8 磨損率 162 4.9 高溫爐體功率 163 第五章 結論與未來展望 165 第六章 參考文獻 169

    [1] Equation Chapter (Next) Section 1 International Energy Agency, “Energy Technology Perspectives 2015”, OECD/IEA, (2015).
    [2] S. Penthor, M. Stollhof, T. Pröll, H. Hofbauer, “Detailed fluid dynamic investigations of a novel fuel reactor concept for chemical looping combustion of solid fuels”, Powder Technology, 287, pp. 61-69 (2016).
    [3] A.A. Olajire, “CO2 capture and separation technologies for end-of-pipe applications -A review“, Energy, 35, pp. 2610-2628 (2010).
    [4] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.M. Amann, C. Bouallou, “Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture“, Applied Thermal Engineering, 30, pp. 53-62 (2010).
    [5] Carbon Capture & Storage Association
    (http://www.ccsassociation.org/what-is-ccs/capture/pre-combustion-capture/)
    [6] 顧洋、邱炳嶔、吳鉉智, “化學迴圈程式技術及其在節能減碳領域之應用”, 臺灣能源期刊, 第一卷, 第一期, pp. 35-50 (2012).
    [7] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, “Progress in Chemical-Looping Combustion and Reforming technologies”, Progress in Energy and Combustion Science, 38, pp. 215-282 (2012).
    [8] A. Bischi, Ø. Langørgen, I. Saanum, J. Bakken, M. Seljeskog, M. Bysveen, J.-X. Morin, O. Bolland, “Design study of a 150 kWth double loop circulating fluidized bed reactor system for chemical looping combustion with focus on industrial applicability and pressurization”, International Journal of Greenhouse Gas Control, 5, pp. 467-474 (2011).
    [9] L.S. Fan, Chemical Looping Systems for Fossil Energy Conversions, WILEY, (2010).
    [10] D. Kunii, O. Levenspiel, Fluidization Engineering, H Brenner, (1991).
    [11] A. Haider, O. Levenspiel , “Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles”, Powder Technology, 58, pp. 63-70 (1989).
    [12] 錢建嵩, 流體化床技術, 高立圖書有限公司, (2011).
    [13] D. Geldart, “Gas Fluidization Technology”, WILEY, (1987).
    [14] Y. Alghamdi, Z. Peng, K. Shah, B. Moghtaderi, E. Doroodchi, “Predicting the solid circulation rate in chemical looping combustion systems using pressure drop measurements”, Powder Technology, 286, pp. 572-581 (2015).
    [15] C. Linderholm, T. Mattisson, A. Lyngfelt, “Long-term integrity testing of spray-dried particles in a 10-kW chemical-looping combustor using natural gas as fuel”, Fuel, 88, pp. 2083-2096 (2009).
    [16] Y.A. Alghamdi, E. Doroodchi, B. Moghtaderi, “Mixing and segregation of binary oxygen carrier mixtures in a cold flow model of a chemical looping combustor”, Chemical Engineering Journal, 223, pp. 772-784 (2013).
    [17] C. Linderholm, M. Schmitz, “Chemical-looping combustion of solid fuels in a 100 kW dual circulating fluidized bed system using iron ore as oxygen carrier”, Journal of Environmental Chemical Engineering, 4, pp. 1029-1039 (2016).
    [18] Y. Qiu, Y. Chen, G.G.Z. Zhang, L. Liu, W. Porter, Developing Solid Oral Dosage Forms: Pharmaceutical Theory & Practice, Academic Press, (2009)
    [19] A. Abad, J. Adánez, F. García-Labiano, L.F. de Diego, P. Gayán, J. Celaya, “Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion”, Chemical Engineering Science, 62, pp. 533-549 (2007).
    [20] Z. Peng, E. Doroodchi, Y.A. Alghamdi, K. Shah, C. Luo, B. Moghtaderi, “CFD-DEM simulation of solid circulation rate in the cold flow model of chemical looping systems”, Chemical Engineering Research and Design, 95, pp. 262-280 (2015).
    [21] E. Johansson, A. Lyngfelt, T. Mattisson, F. Johnsson, “Gas leakage measurements in a cold model of an interconnected fluidized bed for chemical-looping combustion”, Powder Technology, 134, pp. 210-217 (2003).
    [22] 吳家樺、沈來宏、肖軍、盧海勇, “串列流體床內氣固流動控制”, 化工學報, 58, pp. 2753-2758 (2007).
    [23] T. Song, J. Wu, H. Zhang, L. Shen, “Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal”, International Journal of Greenhouse Gas Control, 11, pp. 326-336 (2012).
    [24] E. Johansson, T. Mattisson, A. Lyngfelt, H. Thunman, “A 300 W laboratory reactor system for chemical-looping combustion with particle circulation”, Fuel, 85, pp. 1428-1438 (2006).
    [25] A. Lyngfelt, H. Thunman, “Construction and 100 h of operational experience of a 10-kW chemical-looping combustor”, Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project, 1, chapter 36 (2005).
    [26] S. Penthor, F. Zerobin, K. Mayer, T. Pröll, H. Hofbauer, “Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120 kW pilot plant for gaseous fuels”, Applied Energy, 145, pp. 52-59 (2015).
    [27] C. Linderholm, M. Schmitz, P. Knutsson, A. Lyngfelt, “Chemical-looping combustion in a 100-kW unit using a mixture of ilmenite and manganese ore as oxygen carrier”, Fuel, 166, pp. 533-542 (2016).
    [28] J. Ströhle, M. Orth, B. Epple, “Design and operation of a 1 MWth chemical looping plant”, Applied Energy, 113, pp. 1490-1495 (2014).
    [29] M.A. Pans, P. Gayán, L.F. de Diego, F. García-Labiano, A. Abad, J. Adánez, “Performance of a low-cost iron ore as an oxygen carrier for Chemical Looping Combustion of gaseous fuels”, Chemical Engineering Research and Design, 93, pp. 736-746 (2015).
    [30] C. Dong, X. Liu, W. Qin, Q. Lu, X. Wang, S. Shi, and Y. Yang, “Deep reduction behavior of iron oxide and its effect on direct CO oxidation,” Applied Surface Science, vol. 258, no. 7, pp. 2562-2569, 2012.
    [31] J. Zieliński, I. Zglinicka, L. Znak, and Z. Kaszkur, “Reduction of Fe2O3 with hydrogen,” Applied Catalysis A: General, vol. 381, no. 1-2, pp. 191-196, 2010.
    [32] O. Nordness, L. Han, Z. Zhou, and G. M. Bollas, “High-Pressure Chemical-Looping of Methane and Synthesis Gas with Ni and Cu Oxygen Carriers,” Energy & Fuels, vol. 30, no. 1, pp. 504-514, 2016.
    [33] Deepak Kulkarni, Israel E. Wachs, “Isopropanol oxidation by pure metal oxide catalysts number of active surface sites and turnover frequencies.”
    [34] J. Bedia, J. M. Rosas, D. Vera, J. Rodríguez-Mirasol, and T. Cordero, “Isopropanol decomposition on carbon based acid and basic catalysts,” Catalysis Today, vol. 158, no. 1-2, pp. 89-96, 2010.
    [35] P.-C. Chiu, Y. Ku, H.-C. Wu, Y.-L. Kuo, and Y.-H. Tseng, “Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion,” Energy & Fuels, vol. 28, no. 1, pp. 657-665, 2014.

    QR CODE