簡易檢索 / 詳目顯示

研究生: 黃嘉祥
Jia-Siang Huang
論文名稱: 鈉摻雜改質對於鐵鋁載氧體運用於化學迴路燃燒程序之可行性評估
Feasibility Evaluation of Na-modified Fe2O3/Al2O3 as Oxygen Carrier for Chemical Looping Combustion Process
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
周宏隆
Hung-Lung Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 118
中文關鍵詞: 鈉摻雜改質常壓電漿噴束氧化鐵化學迴路燃燒程序
外文關鍵詞: Na-modified, Atmospheric pressure plasma jet, Iron oxide, Chemical Looping Combustion Process
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學迴路燃燒程序為同時具有低成本及高能源效率之二氧化碳捕獲技術,其技術特點為於低成本下即可將二氧化碳進行分離及捕捉。其中,載氧體於化學迴路燃燒程序中扮演一個非常重要的角色,為傳遞熱與氧氣之樞紐,故選擇適合之載氧體將影響整個化學迴路燃燒程序是否順利連續操作之關鍵。氧化鐵為常見之載氧體,具有高熔點、低成本及高機械強度等優點,但多重氧化態問題將導致還原反應性降低,故本研究將評估海水中之鈉有效的摻雜改質氧化鐵,降低改質之成本,實現高效能之載氧體製備流程,並且改善氧化鐵運用於化學迴路燃燒程序中之二氧化碳莫爾分率、二氧化碳產率以及碳捕獲效率。
    首先使用不同比例之氧化鐵/氧化鋁擔任基礎載氧體,評估不同比例之氧化鐵/氧化鋁載氧體運用於化學迴路燃燒程序之可行性,結果顯示,當氧化鐵/氧化鋁重量比為60:40時具有較佳之抗磨耗能力、反應活性以及反應穩定性,故本實驗將使用FA32當作基礎載氧體進行後續之不同含鈉水溶液摻雜改質氧化鐵/氧化鋁基礎載氧體之探討,評估鈉摻雜改FA32基礎載氧體運用於化學迴路燃燒程序中之可行性,其中含鈉水溶液來源分別為常壓電漿噴束(APPJ)製備氫氧化鈉水溶液與實驗級配置硝酸鈉水溶液。結果顯示,不同含鈉水溶液摻雜改質FA32基礎載氧體皆可以獲得良好之二氧化碳莫爾分率、二氧化碳產率及碳捕獲效率。
    最後,本研究將使用氯化鈉模擬海水之成分配合常壓電漿噴束摻雜改質FA32基礎載氧體,評估海水摻雜改質FA32基礎載氧體運用於化學迴路燃燒程序之可行性,結果顯示氯化鈉摻雜改質FA32基礎載氧體於實驗級半套式流體化床反應器中具有較高之二氧化碳莫爾分率、二氧化碳產率及碳捕獲效率,其所對應之數值依序為0.95、0.91及0.96,具非常優秀之燃料轉化效果,因此對於後續海水摻雜改質FA32運用於化學迴路燃燒程序中將具優越之前瞻性。


    Chemical looping combustion (CLC) process has been recognized as a promising technology of carbon dioxide (CO2) captured. This technology is involved of capture, separation and utilization CO2 gas without high cost and resources. However, oxygen carriers, which transferred heat and oxygen, play an important role in the CLC process and the performance is a key issue for the application of CLC process. The use of iron oxide (Fe2O3) as oxygen carrier in CLC process is attractive because of their relative high melting point, low cost and high mechanical property. Unfortunately, the low reactivity of Fe2O3 with fuel is the major drawbacks during reduction reaction. In this study, sodium (Na) dopants from sea water is an effective catalyst, and as such it was combined with Fe2O3 to assess any possible enhancement to the kinetic rate of the reduction of Fe2O3 with fuel gases.
    In this study, the feasibility of different ratios of Fe2O3/Al2O3 as oxygen carriers in CLC process were investigated. The Fe2O3/Al2O3 oxygen carrier with 60wt% Fe2O3 shows successful attrition behavior, reaction activity and thermal stability in the CLC process. Furthermore, the effectiveness and sources of Na ions as a FA32 oxygen carrier promoter via wet impregnation method are also investigated. The reduction performance and thermal stability are determined by thermogravimetric analyser (TGA). Moreover, carbon dioxide yield of the Na-modified FA32 oxygen carrier is also performed in lab-scaled semi-fluidized bed reactor (semi-FzBR). It is found that the incorporation of 5 mol% Na led to an improved reduction performance as compared to the unmodified oxygen carrier. The addition of Na ions can significantly promote the reduction performance of FA32 oxygen carrier.
    Moreover, the use of NaCl solution as a precursor to prepare the sodium dopants using a novel atmospheric pressure plasma jet (APPJ). The incorporation of sodium dopants from NaCl solution led to an improved reduction performance as compared to the raw FA32 oxygen carrier. The addition of Na ions from seawater can significantly promote the carbon capture efficiency and CO2 yield of FA32 oxygen carrier. Therefore, Na-modified Fe2O3/Al2O3 via seawater by APPJ system as oxygen carrier in a reversible chemical looping combustion process would be environmentally beneficial.

    中文摘要 I 英文摘要 II 致謝 IV 目錄 V 圖索引 VIII 表索引 XIII 第一章 緒論 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 2.1 化學迴路燃燒程序 5 2.2 載氧體的選擇與特性 7 2.3常見載氧體種類 12 2.3.1鐵系載氧體 12 2.3.2 鎳系載氧體 19 2.3.3 銅系載氧體 23 2.3.4 其餘常見之載氧體 27 2.3.5 複合型載氧體 30 2.3.6 富鐵氧化物載氧體 35 2.4 金屬改質載氧體 36 2.5 惰性擔體的選擇 43 2.6 反應器的設計與種類 44 2.7 燃料的種類 47   第三章 實驗設備與程序 3.1 實驗藥品 49 3.2 實驗設備與分析儀器 50 3.2.1常壓電漿噴束 50 3.2.2 感應耦合電漿質譜分析儀 51 3.2.3 X光繞射儀 51 3.2.4 場發射掃描式電子顯微鏡 51 3.2.5 比表面積分析儀 52 3.2.6 磨耗測試儀 53 3.2.7 熱重分析儀 54 3.2.8 實驗級半套式流體化床反應器 55 3.3 材料製備 56 3.3.1製備氧化鐵/氧化鋁基礎載氧體 56 3.3.2 製備鈉摻雜改質氧化鐵/氧化鋁基礎載氧體 57 第四章 結果與討論 4.1 氧化鐵/氧化鋁系統之基礎載氧體運用於化學迴路燃燒程序中 58 4.1.1 氧化鐵/氧化鋁基礎載氧體之物性分析 58 4.1.2 氧化鐵/氧化鋁基礎載氧體之化性分析 64 4.1.3 氧化鐵/氧化鋁基礎載氧體之二氧化碳轉化效率評估 71 4.2 鈉摻雜改質氧化鐵/氧化鋁基礎載氧體運用於化學迴路燃燒程序中 79 4.2.1 含鈉水溶液之製備 79 4.2.2 鈉摻雜改質氧化鐵/氧化鋁基礎載氧體之物性分析 82 4.2.3 鈉摻雜改質氧化鐵/氧化鋁基礎載氧體之化性分析 86 4.2.4 鈉摻雜改質氧化鐵/氧化鋁基礎載氧體之二氧化碳轉化效率評估 92 4.3 氯化鈉改質氧化鐵/氧化鋁基礎載氧體運用於化學迴路燃燒程序中 99 4.3.1 氯化鈉溶液作為前驅物製備含鈉水溶液 99 4.3.2 氯化鈉摻雜改質氧化鐵/氧化鋁基礎載氧體之物性分析 101 4.3.3 氯化鈉摻雜改質氧化鐵/氧化鋁載氧體之二氧化碳轉化效率評估 103 第五章 結果與未來展望 5.1 氧化鐵/氧化鋁基礎載氧體 105 5.2 鈉摻雜改質氧化鐵/氧化鋁基礎載氧體 106 5.3 氯化鈉改質氧化鐵/氧化鋁基礎載氧體 107 5.4 未來展望 108 第六章 參考文獻 109

    1. United Nations Framework Convention on Climate Change, UNFCCC [聯合國氣候變化綱要公約](1992)
    2. 陳巾眉、蔡麗伶,「氣候變遷Q&A:溫室氣體會滯留在大氣中多久」,環境資源中心(2012)。
    3. IEA/OECD Key World Energy Statistics (2015).
    4. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava, “Advances in CO2 Capture Technology ─ The U.S. Department of Energy’s Carbon Sequestration Program,” International Journal of Greenhouse Gas Control, Vol. 2, pp. 9-20 (2008).
    5. National Energy Technology Laboratory, “DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap” pp. 41 (2010).
    6. H. Fang, L. Haibin, and Z. Zengli, “Advancements in Development of Chemical-Looping Combustion: A Review,” International Journal of Chemical Engineering, pp. 1-16 (2009).
    7. J. Ada´nez, L. F. de Diego, F. Garcı´a-Labiano, P. Gaya´n, and A. Abad, “Selection of Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, Vol. 18, pp. 371-377 (2004).
    8. K. S. Kang, C. H. Kim, K. K. Bae, W. C. Cho, S. H. Kim, C. S. Park, “Oxygen-Carrier Selection and Thermal Analysis of the Chemical-Looping Process for Hydrogen Production,” International journal of hydrogen energy, Vol. 35, pp. 12246-12254 (2010).
    9. W. K. Lewis, Newton, E. R. Gilliland, “Production of pure carbon dioxide,” (1954).
    10. H. J. Richter, K. F. Knoche, “Reversibility of Combustion Process, Efficiency and Costing,” ACS Symposium Series, Vol. 235, pp. 71-85 (1983).
    11. M. Ishida, D. Zheng, T. Akehata, “Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis,” Energy, Vol. 12, pp. 147-154 (1987).
    12. 朱敬平,「化學迴圈燃燒技術發展概況簡介」,中興工程季刊第110期,pp. 63-72 (2011)。
    13. J. Adánez, A. Abad, F. García-Labiano, P. Gayán, L. F. de Diego, “Progress in Chemical-Looping Combustion and Reforming technologies,” Progress in Energy and Combustion Science, Vol. 38, pp. 215–282 (2012).
    14. E. Jerndal, T. Mattisson, A. Lyngfelt, “Thermal Analysis of Chemical Looping Combustion,” Chemical Engineering Research and Design, Vol. 84, pp. 795-806(2006).
    15. Mineral commodity summaries. U.S. Geological Survey, ISBN 978-1-4113-2666-8 (2010).
    16. A. Lyngfelt, B. Leckner, T. Mattisson, “A Fluidized-Bed Combustion Process with Inherent CO2 Separation; Application of Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 56, pp. 3101-3113 (2001).
    17. T. Mattisson, Q. Zafar, M. Johansson, A. Lyngfelt, “Chemical-Looping Combustion as a New CO2 Management Technology,” First Regional Symposium on Carbon Management, May 22-24 (2006).
    18. B. Kronberger, A. Lyngfelt, G. Löffler, H. Hofbauer, “Design and Fluid Dynamic Analysis of a Bench-Scale Combustion System with CO2 Separation-Chemical Looping Combustion, “Industrial & Engineering Chemistry Research, Vol. 44, pp. 546-556 (2005).
    19. B. Kronberger, E. Johansson, G. Löffler, T. Mattisson, A. Lyngfelt, H. Hofbauer, “A Two-Compartment Fluidized Bed Reactor for CO2 Capture by Chemical Looping Combustion,” Chemical Engineering Technology, Vol. 27, pp. 1318-1326 (2004).
    20. J. Bessieres, A. Bessieres, J. J. Heizmann, “Iron Oxide Reduction Kinetics by Hydrogen,” International Journal of Hydrogen Energy,” Vol. 5, pp. 585-595 (1980).
    21. H. Y. Lin, Y. W. Chen, C. Li, “The Mechanism of Reduction of Iron Oxide by Hydrogen,” Thermochimica Acta, Vol. 400, pp. 61-67 (2003).
    22. W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, W. Maniukiewicz, “Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres,” Applied Catalysis A: General, Vol. 326, pp. 17-27 (2007).
    23. A. Pineau, N. Kanari, I. Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part I. Low Temperature Reduction of Hematite,” Thermochimica Acta, Vol. 447, pp. 89-100 (2006).
    24. H. Y. Lin, Y. W. Chen, C. Li, “The Mechanism of Reduction of Iron Oxide by Hydrogen,” Thermochimica Acta, Vol. 400, pp. 61-67 (2003).
    25. A. Abad, J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, “Mapping of The Range of Operational Conditions for Cu-, Fe- and Ni-Based Oxygen Carriers in Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 62, pp. 533-549 (2007).
    26. Esmail R. Monazam, Ronald W. Breault, Ranjani Siriwardane, “Kinetics of Hematite to Wüstite by Hydrogen for Chemical Looping Combustion,” Energy & Fuels, Vol. 28, pp.5406 -5414 (2014).
    27. B. Wang, H. Zhao, Y. Zheng, Z. Liu, R. Yan, C. Zheng, “Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers,” Fuel Processing Technology, Vol. 96, pp. 104-115 (2012).
    28. P. C. Chiu , Y. Ku, Y. L. Wu, H. C. Wu, Y.L. Kuo, Y. H. Tseng, ”Characterization and Evaluation of Prepared Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Process,” Aerosol and Air Quality Research, Vol. 14, pp. 981–990 (2014).
    29. A. Abad, F. García-Labiano, L. F. de Diego, P. Gayán, J. Adánez, “Reduction Kinetics of Cu-, Ni- and Fe-Based Oxygen Carriers Using Syngas (CO+H2) for Chemical Looping Combustion,” Energy & Fuels, Vol. 21, pp. 1843-1853 (2007).
    30. H. Leion, T. Mattisson, A. Lyngfelt, “The Use of Petroleum Coke as Fuel in Chemical-Looping Combustion,” Fuel, Vol. 86, pp. 1947-1958 (2007).
    31. T. Mattisson, M. Johansson, A. Lyngfelt, “Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles-Application to Chemical-Looping Combustion,” Energy & Fuels, Vol. 18, pp. 628-637 (2004).
    32. Q. Zafar, T. Mattisson, B. Gevert, “Redox Investigation of Some Oxides of Transition-State Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4,” Energy & Fuels, Vol. 20, pp. 34-44 (2006).
    33. M. Rydèn, M. Arjmand, “Continuous Hydrogen Production Via the Steam-Iron Reaction by Chemical Looping in a Circulating Fluidized-Bed Reactor,” International Journal of Hydrogen Energy, Vol. 37, pp. 4843-4854 (2012).
    34. Q. Zafar, T. Mattisson, B. Gevert, “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-Looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as Support,” Industrial & Engineering Chemistry Research, Vol. 44, pp. 3485-3496 (2005).
    35. 劉祐誠,「以合成氣為燃料評估Fe2TiO5載氧體在化學迴圈程序的應用」,碩士論文,國立台灣科技大學(2011)。
    36. M. Arjmand, A-M. Azad, H. Leion, T. Mattisson, A. Lyngfelt, “Evaluation of CuAl2O4 as an Oxygen Carrier in Chemical-Looping Combustion (CLC)”, Industrial & Engineering Chemistry Research, Vol. 51, pp. 13924-13934 (2012).
    37. E. Karimi, H. R. Forutan, M. Saidi, M. R. Rahimpour, A. Shariati, “Experimental Study of Chemical-Looping Reforming in a Fixed-Bed Reactor: Performance Investigation of Different Oxygen Carriers on Al2O3 and TiO2 Support,” Energy & Fuels, Vol. 28, pp. 2811-2820 (2014).
    38. P. Gay´an, L. F. de Diego, F. Garc´ıa-Labiano, J. Ad´anez, A. Abad, C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 87, pp. 2641–2650 (2008).
    39. Z. Gao, L. Shen, J. Xiao, C. Qing, Q. Song, “Use of Coal as Fuel for Chemical-Looping Combustion with Ni-Based Oxygen Carrier,” Industrial & Engineering Chemistry Research, Vol. 47, pp. 9279-9287 (2008).
    40. H. J. Ryu, N. Y. Lim, D. H. Bae, G. T. Jin, “Carbon Deposition Characteristics and Regenerative Ability of Oxygen Carrier Particles for Chemical-Looping Combustion,” Korean J. Chem. Eng., Vol. 20(1), pp. 157-162 (2003).
    41. M. Ishida, H. Jin, T. Okamoto, “Kinetic Behavior of Solid Particle in Chemical-Looping Combustion: Suppressing Carbon Deposition in Reduction,” Energy & Fuels, Vol. 12, pp. 223 (1998).
    42. H. Jin, M. Ishida, “Reactivity Study on a Novel Hydrogen Fueled Chemical Looping Combustion”International Journal of Hydrogen Energy, Vol.26, pp. 889-894 (2001).
    43. M. Ishida, H. Jin, “CO2 Recovery In A Power Plant with Chemical Looping Combustion” Energy Conversion and Management, Vol. 38, pp.187-192 (1997)
    44. R. Villa, C. Cristiani, G. Groppi, L. Lietti, P. Forzatti, U. Cornaro, S. Rossini,.”Ni-Based Mixed Oxide Materials for CH4 Oxidation under Redox Cycle Conditions,” Journal of Molecular Catalysis A: Chemical, Vol. 204-205, pp. 637-646 (2003).
    45. E. Jerndal, T. Mattisson, A. Lyngfelt, “Investigation of Different NiO/NiAl2O4 Particles as Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, Vol. 23, pp. 665-676 (2009).
    46. L. Shen, J. Wu, Z. Gao, J. Xiao, “Characterization of Chemical Looping Combustion of Coal in a 1 kWth Reactor with a Nickel-Based Oxygen Carrier,” Combustion and Flame, Vol. 157, pp. 934-942 (2010).
    47. L. Shen, J. Wu, Z. Gao, J. Xiao, “Reactivity Deterioration of NiO/Al2O3 Oxygen Carrier for Chemical Looping Combustion of Coal in a 10 kWth Reactor,” Combustion and Flame, Vol. 156, pp. 1377-1385 (2009).
    48. M. Johansson, T. Mattisson, A. Lyngfelt, “Use of NiO/NiAl2O4 Particles in a 10 kW Chemical-Looping Combustor,” Industrial and Engineering Chemistry Research, Vol. 45, pp. 5911-5919 (2006).
    49. L. F. de Diego, M. Ortiz, J. Adánez, F. García-Labiano, A. Abad, P. Gayán, “Synthesis Gas Generation by Chemical-Looping Reforming in a Batch Fluidized Bed Reactor Using Ni-Based Oxygen Carriers,” Chemical Engineering Journal, Vol. 144, pp. 289-298 (2008).
    50. Tobias Mattisson, “Chemical-Looping Combustion Using Gaseous and Solid fuel,” 2nd International Oxy-Combustion Research Network, (2007).
    51. L. F. de Diego, F. García-Labiano, J. Adánez, P. Gayán, A. Abad, B. M. Corbella, J. M. Palacios, “Development of Cu-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 83, pp. 1749-1757 (2004).
    52. L. F. de Diego, F. García-Labiano, P. Gayán, J. Celaya, J. M. Palacios, J. Adánez, “Operation of a 10 kWth Chemical-Looping Combustor during 200 h with a CuO-Al2O3 Oxygen Carrier,” Fuel, Vol. 86, pp. 1036-1045 (2007).
    53. Q. Zafar, A. Abad, T. Mattisson, B. Gevert, M. Strand, “Reduction and Oxidation Kinetics of Mn3O4/Mg–ZrO2 Oxygen Carrier Particles for Chemical Looping Combustion,” Chemical Engineering Science, Vol. 62, pp. 6556-6567 (2007).
    54. E.R. Stobbe, B.A. de Boer, J.W. Geus, “The Reduction and Oxidation Behaviour of Manganese Oxides,” Catalysis Today, Vol. 47, pp. 161-167 (1999).
    55. M. Johansson, T. Mattisson, A. Lyngfelt, “Investigation of Mn3O4 with Stabilized ZrO2 for Chemical Looping Combustion,” Institution of Chemical Engineers, Vol. 84, pp. 807-818 (2006).
    56. T. Mattisson, A. Järdnäs, A. Lyngfelt, “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen - Application for Chemical Looping Combustion,” Energy & Fuels, Vol. 17, pp. 643-651 (2003).

    57. 徐維懋,「鎳鐵氧化物尖晶石結構載氧體之材料特性與惰性擔體之選用應用於化學迴圈性能評估」,碩士論文,國立台灣科技大學(2012)。
    58. Y. L. Kuo, W. C. Huang, W. M. Hsu, Y. H. Tseng, Y. Ku, “Use of Spinel Nickel Aluminium Ferrite as Self-Supported Oxygen Carrier for Chemical Looping Hydrogen Generation Process,” Aerosol and Air Quality Research, Vol. 15, pp. 2700–2708 (2015).
    59. S. Wang, G. Wang, F. Jiang, M. Luo, H. Li, “Chemical Looping Combustion of Coke Oven Gas by Using Fe2O3/CuO with MgAl2O4 as Oxygen Carrier,” Energy & Environmental Science, Vol. 3, pp. 1353-1360 (2010).
    60. H. Jin, T. Okamoto, M. Ishida, “Development of a Novel Chemical-Looping Combustion: Synthesis of a Looping Material with a Double Metal Oxide of CoO-NiO,” Energy & Fuels, Vol. 12, pp. 1272-1277 (1998).
    61. J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, A. Abad,“Nickel-Copper Oxygen Carriers to Reach Zero CO and H2 Emissions in Chemical-Looping Combustion,” Industrial & Engineering Chemistry Research, Vol. 45, pp. 2617-2625 (2006).
    62. A. Lambert, C. Delquié, I. Clémençon, E. Comte, V. Lefebvre, J. Rousseau, B. Durand,“Synthesis and Characterization of Bimetallic Fe/Mn Oxides for Chemical Looping Combustion,” Energy Procedia, Vol. 1, pp. 375-381 (2009).
    63. T. Song, L-H. Shen, J. Xiao, Z-P. Gao, H-M. Gu, S-W. Zhang, “Characterization of Hematite Oxygen Carrier in Chemical-Looping Combustion at High Reduction Temperature,” Journal of Fuel Chemistry and Technology, Vol. 39, pp. 567-574 (2011).
    64. 黃薇臻,「電弧爐收集支集塵灰運用於化學迴圈燃燒程序的可行性評估」,碩士論文,國立台灣科技大學(2013)。
    65. Z. Yu, C. Li, Y. Fang, J. Huang, Z. Wang, “Reduction Rate Enhancements for Coal Direct Chemical Looping Combustion with an Iron Oxide Oxygen Carrier,” Energy and Fuels, Vol. 26, pp. 2505-2511 (2012).
    66. J. Bao, Z. Li, N. Cai, “Reduction Kinetics of Foreign-Ion-Promoted Ilmenite Using Carbon Monoxide (CO) for Chemical Looping Combustion”, Ind. Eng. Chem. Res., Vol. 52, pp. 10646-10655 (2013).
    67. 楊仁毅,「金屬改質天然鐵礦應用於流體化床式化學迴圈程序之研究」,碩士論文,國立台灣科技大學(2014)。
    68. Duane D. Miller, R. Siriwardane, J. Poston, “Fluidized-Bed and Fixed-Bed Reactor Testing of Methane Chemical Looping Combustion with MgO-Promoted Hematite,” Applied Energy, Vol. 146, pp. 111-121 (2015).
    69. W. Gac, A. Denis, T. Borowiecki, L. Kepinski, “Methane decomposition over Ni-MgO-Al2O3 Catalysts,” Applied Catalysis A: General, Vol. 357, pp. 236-243 (2009).
    70. 游任鈞,「鎂摻雜改質程序對於鐵鋁載氧體運用於化學迴路燃燒程序之可行性評估」,碩士論文,國立台灣科技大學(2015)。
    71. P. C. Chiu, Y. Ku, “Chemical Looping Process - A Novel Technology for Inherent CO2 Capture,” Aerosol and Air Quality Research, Vol. 14, pp. 1421-1432 (2012).
    72. L. Shen, J. Wu, J. Xiao, Q. Song, R. Xiao, “Chemical-Looping Combustion of Biomass in a 10 kW Reactor with Iron Oxide as an Oxygen Carrier,” Energy & Fuels, Vol. 23, pp. 2498-2505 (2009).
    73. P. Kolbitsch, J. Bolhàr-Nordenkampf, T. Pröll, H. Hofbauer, “Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation,” Industrial & Engineering Chemistry Research, Vol. 48, pp. 5542-5547 (2009).
    74. F. Li, L. Fan, “Clean Coal Conversion Processes-Progress and Challenges,” Energy & Environmental Science, Vol. 1, pp. 248-267 (2008).
    75. 顧洋,邱炳嶔,「能源新技術–化學迴圈程序簡介」,化工技術第19卷第12期,pp. 132-145 (2011)。
    76. C. Y. Wen, Y. H. Yu, “A generalized method for predicting the minimum fluidization velocity,” A1ChE Journal, Vol. 12, pp. 610-612 (1996).
    77. P. Gayán, A. Cabello, F. G. Labiano, A. Abad, L. F. de Diego, J. Adanez, “Performance of a low Ni content oxygen carrier for fuel gas combustion in a continuous CLC unit using a CaO/Al2O3 system as support,” International Journal of Greenhouse Gas Control, Vol. 14, pp. 209-219 (2013).
    78. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, “Formation of hollow nanocrystals through the nanoscale kirkendall effect”, Science, Vol.304, pp. 711-714 (2004)
    79. H. J. Fan, U. Gçsele, M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review”, Small, pp. 1660-1671 (2007).
    80. 黃坤祥,「粉末冶金學」,中華民國粉末冶金學會 (2008)。
    81. 呂維明、戴怡得,「粉粒體粒徑量測技術」,高立圖書有限公司 (2004)。
    82. 顧洋,「化學迴路程序應用於減碳領域之發展趨勢」(2013)。
    83. H. Ge, L. Shen, H. Gu, S. Jiang, “Effect of co-precipitation and impregnation on K-decorated Fe2O3/Al2O3 oxygen carrier in Chemical Looping Combustion of bituminous coal,” Chemical Engineering Journal, Vol. 262, pp. 1065-1076 (2015).
    84. J. Wang, H. Zhao, “Evaluation of CaO-decorated Fe2O3/Al2O3 as an oxygen carrier for in-situ gasification chemical looping combustion of plastic wastes,” Fuel, Vol. 165, pp. 235-243 (2016).
    85. L. Liu, M. R. Zachariah, “Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion,” Energy & Fuels, Vol. 27, pp. 4977-4983 (2013).
    86. H. Gu, L. Shen, J. Xiao, S. Zhang, T. Song, D. Chen, “Iron ore as oxygen carrier improved with potassium for chemical looping combustion of anthracite coal,” Combustion and Flame, Vol.159, pp. 2480-2490 (2012).
    87. Esmail R. Monazam, Ronald W. Breault, Ranjani Siriwardane, “Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion,” Chemical Engineering Journal, Vol. 242, pp. 204-210 (2014).
    88. H. Ge, L. Shen, H. Gu, T. Song, S. Jiang, “Combustion performance and sodium transformation of high-sodium ZhunDong coal during chemical looping combustion with hematite as oxygen carrier,” Fuel, Vol. 159, pp. 107-117 (2015).
    89. L. F. de Diego, M. Ortiz, F. García-Labiano, J. Adánez, A. Abad, P. Gayán, “Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers,” Journal of Power Sources, Vol.192, pp. 27-34 (2009).

    無法下載圖示 全文公開日期 2021/07/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE