簡易檢索 / 詳目顯示

研究生: 劉銘倫
Ming-lun Liu
論文名稱: 銅板材微成形之尺寸效應對材料機械性質之影響
Size Effect on Mechanical Property in Micro Copper Sheet Forming
指導教授: 黃佑民
You-Min Huang
口試委員: 向四海
Su-Hai Hsiang
陳聰嘉
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 68
中文關鍵詞: 微成形尺寸效應拉伸試驗
外文關鍵詞: micro-forming tensile test, size effect of micro-forming
相關次數: 點閱:290下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

金屬微成形技術是一項正在發展中的精密工業技術,其具有許多較MEMS技術佳的優點,例如生產效率高、成本低和產品可具複雜之幾何外形等。不過,當尺寸縮小至微米等級時,則其材料之機械性質會有明顯的變化,而這種與巨觀性質有所差異的現象我們稱之為尺寸效應(size effect)。
有關尺寸效應的影響於近十年來開始,有越來越多的學者投入相關研究當中,但至今尚無法定義出明確的機械性質與其實驗之方法。因此本研究藉由實驗來了解尺寸效應的影響。並依據實驗結果和相關參數的比較,可獲得銅材料在微觀尺寸的特性。
本研究之研究重點在於討論specimen size effect和grain size effect對於銅金屬材料微成形的機械性質之影響。首先,選取五種不同厚度之銅金屬平板作為實驗用之材料。由於ASTM規範中的標準尺寸(E8-M standard specimens)對於微觀拉伸試驗而言似乎太大,故本研究之實驗以將ASTM之最小拉伸試片(E8-M subsize specimens)的外形,以及等比例縮小最小拉伸試片外形成1/2來製作實驗用之試片,探討外形縮小1/2後材料塑流應力曲線之變化,以求得尺寸縮小過程中影響塑流應力曲線變化之重要因素,並且在實驗過程中利用熱處理方法改變試片內部之晶粒大小進行實驗,以求得內部晶粒尺寸的改變對於材料之塑流應力曲線的影響,以作為日後在微觀機械性質測試的參考。


Metal micro-forming process is a developing technology in precision manufacturing. This technology has many advantages over conventional MEMS technology, such as high producing efficiency, low cost, and the ability to produce products with complicated geometrical shape, etc. But when the dimensions reduce to the micro scale, the material properties change dramatically due to the reduction of dimensions. This is called the “size effect”. This effect causes a lot of problems with further research.
The research on metal micro-forming has been developed more and more since ten years. However, neither a correct methodology nor a clear micro mechanical property has been well determined. Hence, in this research several experiments are carried out to point out the influence of “size effect”. According to comparisons between the experiment data and relevant parameters, the material characteristics in micro scale can be found.
In order to find the mechanical properties in micro scale, this study shows the effect of specimen size and grain size on the micro tensile test of copper material. Firstly, five copper micro-sheets with different thicknesses have been chosen for the experiment materials. Because the minimum standard test piece formulated in ASTM is still too big for this micro tensile test, this study decide to shrink the sample size of specimen shape to 1/2 . This way is able to get the important factor which influence the flow stress on the micro tensile test. Secondly, these samples of different grain size are made by heat treatment. Then these samples of different grain size are used to conduct the experiment in the process. According to the experiment result, the change of flow stress which is influenced by the various grain size can be found. Finally, the change of the mechanical behavior between specimen size and grain size is obtained.

摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 相似原理 2 1.2.2 尺寸效應之物理來源 3 1.2.3 尺寸效應之結構來源 4 1.2.4 其他相關文獻 9 1.3 研究目的 13 1.4 論文架構 16 第二章 實驗方法 17 2.1 拉伸試驗 17 2.1.1 實驗材料之選取 17 2.1.2 拉伸實驗之設備 18 2.1.3 夾頭的選擇 20 2.1.4 拉伸試片設計與製作 23 2.1.4 拉伸速度 29 2.1.5 拉伸實驗步驟 31 2.2 熱處理 32 2.2.1 熱處理之設備 32 2.2.2 熱處理之步驟 34 2.3 晶粒大小之計算 37 2.3.1 試片之金相實驗 37 2.3.2 晶粒大小之計算方法 39 第三章 實驗結果與討論 42 3.1 相同厚度下不同熱處理退火溫度之拉伸結果 43 3.1.1 外形比例100%─相同厚度下不同熱處理退火溫度之拉伸結果 43 3.1.2 外形比例50%─相同厚度下不同熱處理退火溫度之拉伸結果 51 3.2 厚度0.1mm之E8M與E345之比較 55 3.2.1 外形比例100%─厚度0.1mm下E8M與E345之結果比較 55 3.2.2 外形比例50%─厚度0.1mm下E8M與E345之結果比較 58 3.3  相同外形比例與相同熱處理退火溫度之比較 60 3.3.1 外形比例100%與相同熱處理退火溫度之比較 60 3.3.2 外形比例50%與相同熱處理退火溫度之比較 63 第四章 結論與未來展望 65 4.1 結論 65 4.2 未來展望 67 參考文獻 68

[1] U. Engel , & R. Eckstein , (2002) , “Microforming─from basic research to its realization” , Journal of Materials Processing Technology , Vol. 125-126 , pp.35-44.
[2] R.W. Armstrong , (1961) , “On size effects in polycrystal plasticity” , Journal of the Mechanics and Physics of Solids , Vol. 9 , pp.196-199.
[3] F. Vollertsen , (2003 October 9) , “Size effects in manufacturing” , The Bremer Institut für angewandte Strahltechnik.
[4] U. Engel , (2006) , “Tribology in microforming” , Tribology in Manufacturing Processes , Vol. 260, pp.265-273.
[5] N. Hansen , (1977) , “The effect of grain size and strain on the tensile flow stress of aluminum at room temperature” , Acta Metallurgica , Vol.25 , pp.863-869.
[6] F. Vollertsen , (2001) , “Microparts” , Edit by J. Buschow , & R. Kopp , Metal forming , pp.5424-5427. Amsterdam: Elsevier.
[7] T.A. Kals , & R. Eckstein , (2000) , “Miniaturization in sheet metal working” , Journal of Materials Processing Technology , Vol. 103 , pp.95-101.
[8] Y. Saotome , T. Zhang , & A. Inoue , (1999) , “Microforming of MEMS parts with amorphous alloys” , Materials Research Society Proceedings, Vol. 554 , pp.385-390.
[9] Z. Hu , & F. Vollertsen , (2003 October 9) , “Determination of the friction coefficient in deep drawing” , The Bremer Institut für angewandte Strahltechnik.
[10] Y. Saotome , & T. Okamoto , (2001) , “An in-situ incremental microforming system for three-dimensional shell structures of foil materials” , Journal of Materials Processing Technology , Vol. 113 , pp.636-640.
[11] Y. Saotome , & H. Iwazaki , (2001) , “Superplastic backward microextrusion of microparts for micro-electro-mechanical systems”, Journal of Materials Processing Technology , Vol. 119 , pp.307-311.
[12] Y. Saotome , & H. Iwazaki , (2000) , “Superplastic extrusion of microgear shaft of 10μm in module” , Microsystem Technologies , Vol. 6 , pp.126-129.
[13] R. Smerd , & S. Winkler , (2005) , “High strain rate tensile testing of automotive aluminum alloy sheet” , International Journal of Impact Engineering , Vol. 32 , pp.541-560.
[14] F. Vollertsen , & Z. Hu , (2006) , “State of the art in micro forming” , International Journal of Machine Tools & Manufacture , Vol. 46 , pp.1172-1179.
[15] AIST(n. d.) , “Portable Machining Microfactory” , Retrieved January 5 , 2008 , from http://www.aist.go.jp
[16] T . Hirano , K. Nemoto , & K. Furuta , ,(2000) , “Industrial Impact of the MicroFactory” , Proceedings of 2nd Internation Workshop on MicroFactories , pp.27-30.
[17] 丁永健,2005,“金屬精微成形實驗規範之建立與尺寸效應機制之研究”,國立台灣大學機械工程學研究所,碩士論文(指導教授:陳復國),台北市。
[18] Instron(n. d.) , “7 Tips For Materials Testing” , Retrieved January 5 , 2008 , from http://www.instron.com.tw

QR CODE