簡易檢索 / 詳目顯示

研究生: 陳鴻龍
Hong-Long Chen
論文名稱: 丙二醇甲醚醋酸酯製程之設計與控制
Design and Control of the Process of Propylene Glycol Mono-methyl Ether Acetate
指導教授: 周宜雄
Yi-shyong Chou
口試委員: 李豪業
Hao-yeh Lee
王逢盛
Feng-sheng wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: 丙二醇甲醚醋酸酯反應蒸餾
外文關鍵詞: Propylene Glycol Mono-methyl Ether Acetate, reactive distillation
相關次數: 點閱:205下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究係探討由丙二醇甲醚與醋酸進行酯化反應產生丙二醇甲醚醋酸酯之製程設計與控制,丙二醇甲醚醋酸酯是一種工業界及電子業界重要的溶劑,因具有較低的蒸氣壓以及可抑制抗蝕劑微粒的形成,在電子產業中用於調配光阻劑。丙二醇甲醚醋酸酯同時也是在樹脂原料、墨水用溶劑、及紡織工業中一種重要的反應物。研究中首先選擇合適的熱力學及動力學模式來描述程序,並使用Aspen Plus進行穩態模擬。本研究系統為可逆反應,並尋求最小年度總成本(TAC)為目標,來提出系統之最適化流程,分別討論反應蒸餾塔及共沸蒸餾塔兩系統之設計概念與最適化結果,進而提出整廠系統,並將未反應之反應物回收利用,改動進料位置來找到最小年度總成本(TAC)之設計。
本研究接著將探討整廠製程之控制策略,利用Aspen Dynamic進行動態模擬及控制。控制策略方面,使用基本的控制環路,並且利用敏感度分析來尋求每一個操作單元最適合的控制點,接著給予進料量增減的干擾及進料組成改變的干擾,找到一個控制策略能使整個系統在干擾下快速回穩,並保持產物的純度。


In this research, design and control of a reactive distillation column to produce propylene glycol mono-methyl ether acetate (PGMEA) from propylene glycol methyl ether (PGME) and acetic acid (AA) via the esterification reaction is proposed. PGMEA is widely used as the photoresist in electronics industry and it is also important reactant in other industry. First of all, suitable thermodynamic and kinetic model are chosen to describe this process and perform the steady-state simulation by Aspen Plus. The system in this process is a reversible reaction and seeking out the optimum goal is obtained by minimizing the Total Annual Cost (TAC). After two optimum designs which are about reactive distillation column and azeotropic distillation column are obtained, we connect each unit into a plant-wide process and recycle the un-reacted reactants. Then, we change the feed location to look for the optimum process.
After that, we will discuss the dynamic simulation and control of the plant-wide process by Aspen Dynamic. A simple control strategy has been brought forward, and the sensitivity analysis is performed to find the suitable control of each unit. With the interference by adjusting the feed flow rate and feed composition, the proposed control strategy works effectively and holds the purity of the product.

誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.2.1. 反應蒸餾塔之程序分析 5 1.2.2. 醚類與酯類合成之反應蒸餾塔設計 6 1.2.3. 反應蒸餾塔之控制策略 8 1.2.4. 丙二醇甲醚醋酸酯系統 9 1.2.5. 丙二醇甲醚醋酸酯熱力學系統 9 1.3 研究動機 10 1.4 組織章節 11 第二章 熱力學模式與動力學模式 12 2.1 前言 12 2.2 熱力學模式建立與參數 13 2.3 蒸餘曲線圖(RCM) 21 2.4 動力學模式建立與參數 25 第三章 程序模擬與最適化設計 28 3.1 前言 28 3.2 丙二醇甲醚醋酸酯製成反應蒸餾塔設計 29 3.2.1 丙二醇甲醚醋酸酯製成反應蒸餾塔設計概念 29 3.2.2 丙二醇甲醚醋酸酯製成反應蒸餾塔之最適化流程設計 33 3.3 共沸蒸餾分離塔之設計 47 3.3.1 共沸蒸餾分離塔之設計概念 47 3.3.2 共沸蒸餾分離塔之最適化流程設計 50 第四章 動態模擬及控制 59 4.1 前言 59 4.2 敏感度分析 60 4.3 丙二醇甲醚醋酸酯整廠製程控制架構 63 4.4 干擾排除 66 第五章 結論 79 參考文獻 81 附錄A 計算年度總成本使用之公式 87

[中文]
1.郭建麟,「丙烯酸乙酯製程之設計與控制」,國立台灣科技大學化學工程所碩士論文(2005)
2.吳義章,「各類非均勻相共沸系統」,國立台灣科技大學化學工程所碩士論文(2009)
3.林哲誼,「丙二醇甲醚+水與丙二醇甲醚+醇類雙成分系統氣液平衡之研究」,私立明新科技大學化學工程所碩士論文(2009)
4.梁韶芙,「丙二醇甲醚酯非均相觸媒之合成反應動力行為研究」,國立台灣科技大學化學工程所碩士論文(2010)
5.葉虹秀,「丙二醇甲醚醋酸酯+水(甲醇、乙醇、異丙醇)雙成分系統氣液平衡之研究」,私立明新科技大學化學工程所碩士論文(2010)

[英文]
1. Al-Arfaj M., Luyben W.L. Comparison of alternative control structures for an ideal two-product reactive distillation column. Industrial and Engineering Chemistry Research 2000;39:3298-3307.
2. Alejski K., Duprat F. Dynamic simulation of the multicomponent reactive distillation. Chemical Engineering Science 1996;51:4237-4252.
3. Altiokka M.R., de E. Reaction kinetics of the catalytic esterification of acrylic acid with propylene glycol. Applied Catalysis A: General 2009;362:115-120.
4. Bock H., Wozny G., Gutsche B. Design and control of a reaction distillation column including the recovery system. Chemical Engineering and Processing: Process Intensification 1997;36:101-109.
5. Cheng K., Wang S.J., Wong D.S.H. Steady-state design of thermally coupled reactive distillation process for the synthesis of diphenyl carbonate. Computers and Chemical Engineering 2012;52:262-271.
6. Chiang S.F., Kuo C.L., Yu C.C., Wong D.S.H. Design alternatives for the amyl acetate process: Coupled reactor/column and reactive distillation. Industrial and Engineering Chemistry Research 2002;41:3233-3246.
7. Frey T., Stichlmair J. Reactive azeotropes in kinetically controlled reactive distillation. Chemical Engineering Research and Design 1999;77:613-618.
8. Georgiadis M.C., Schenk M., Pistikopoulos E.N., Gani R. The interactions of design, control and operability in reactive distillation systems. Computers and Chemical Engineering 2002;26:735-746.
9. Hsieh C.T., Lee M.J., Lin H.M. Multiphase equilibria for mixtures containing acetic acid, water, propylene glycol monomethyl ether, and propylene glycol methyl ether acetate. Industrial and Engineering Chemistry Research 2006;45:2123-2130.
10. Kolah A.K., Mahajani S.M., Sharma M.M. Acetalization of formaldehyde with methanol in batch and continuous reactive distillation columns. Industrial and Engineering Chemistry Research 1996;35:3707-3720.
11. Luyben W.L. Distillation design and control using Aspen simulation. 2006.
12. Luyben W.L. Principles and case studies of simultaneous design. 2010.
13. Mahajani S.M., Kolah A.K. Some Design Aspects of Reactive Distillation Columns (RDC). Industrial and Engineering Chemistry Research 1996;35:4587-4596.
14. Okasinski M.J., Doherty M.F. Design method for kinetically controlled, staged reactive distillation columns. Industrial and Engineering Chemistry Research 1998;37:2821-2834.
15. Pöpken T., Steinigeweg S., Gmehling J. Synthesis and hydrolysis of methyl acetate by reactive distillation using structured catalytic packings: Experiments and simulation. Industrial and Engineering Chemistry Research 2001;40:1566-1574.
16. Paludetto R., Paret G., Donati G. Multicomponent distillation with chemical reaction mathematical model analysis. Chemical Engineering Science 1992;47:2891-2896.
17. Peng J., Edgar T.F., Eldridge R.B. Dynamic rate-based and equilibrium models for a packed reactive distillation column. Chemical Engineering Science 2003;58:2671-2680.
18. Pham H.N., Ryan P.J., Doherty M.F. Design and minimum reflux for heterogeneous azeotropic distillation columns. AIChE Journal 1989;35:1585-1591.
19. Schmitt M., Hasse H., Althaus K., Schoenmakers H. Synthesis of n-hexyl acetate by reactive distillation. Chemical Engineering and Processing: Process Intensification 2004;43:397-409.
20. Seferlis P. Optimal design and sensitivity analysis of reactive distillation units using collocation models. Industrial and Engineering Chemistry Research 2001;40:1673-1685.
21. Sneesby M.G., Tade M.O., Datta R., Smith T.N. ETBE Synthesis via Reactive Distillation. 1. Steady-State Simulation and Design Aspects. Industrial and Engineering Chemistry Research 1997a;36:1855-1869.
22. Sneesby M.G., Tade M.O., Datta R., Smith T.N. ETBE Synthesis via Reactive Distillation. 2. Dynamic Simulation and Control Aspects. Industrial and Engineering Chemistry Research 1997b;36:1870-1881.
23. Sneesby M.G., Tade M.O., Smith T.N. A multi-objective control scheme for an ETBE reactive distillation column. Chemical Engineering Research and Design 2000;78:283-292.
24. Sneesby M.G., Tade M.O., Smith T.N. Multiplicity and pseudo-multiplicity in MTBE and ETBE reactive distillation. Chemical Engineering Research and Design 1998a;76:525-531.
25. Sneesby M.G., Tade M.O., Smith T.N. Steady-state transitions in the reactive distillation of MTBE. Computers and Chemical Engineering 1998b;22:879-892.
26. Sneesby M.G., Tade M.O., Smith T.N. Two-point control of a reactive distillation column for composition and conversion. Journal of Process Control 1999;9:19-31.
27. Taylor R., Krishna R. Modelling reactive distillation. Chemical Engineering Science 2000;55:5183-5229.
28. Thiel C., Sundmacher K., Hoffmann U. Residue curve maps for heterogeneously catalysed reactive distillation of fuel ethers MTBE and TAME. Chemical Engineering Science 1997;52:993-1005.
29. Tochigi K., Takahara H., Shiga Y., Kawase Y. Isobaric vapor-liquid equilibria for water + propylene glycol monomethyl ether (PGME), water + propyleneglycol monomethyl ether acetate (PGMEA), and PGME + PGMEA at reduced pressures. Fluid Phase Equilibria 2007;260:65-69.

QR CODE