簡易檢索 / 詳目顯示

研究生: 蘇韋欣
Wei-Hsin Su
論文名稱: 反應性蒸餾程序生產丙烯酸乙酯之研究
Study of the Production of Ethyl Acrylate by Reactive Distillation Processes
指導教授: 周宜雄
Yi-Shyong Chou
口試委員: 錢義隆
I-Lung Chien
陳榮輝
Jung-hui Chen
王逢盛
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 160
中文關鍵詞: 丙烯酸乙酯反應性蒸餾可行性分析殘餘曲線穩態模擬動態模擬
外文關鍵詞: Ethyl Acrylate, Simulation of Dynamics, Simulation of Steady-State, Residue Curve Map, Feasibility Analysis, Reactive Distillation
相關次數: 點閱:245下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統化工製程中,反應與分離程序是獨立操作,而反應蒸餾是將兩種操作合併於同一裝置,可以提高轉化率,減少能源損耗,降低操作成本。本研究目的除了探討反應蒸餾生產丙烯酸乙酯之可行性,另外因系統分離依賴汽液平衡及液液平衡,熱力學模式參數對整個程序影響顯著,故將使用兩組熱力學物性資料(A, B)對系統做進一步分析,並比較其結果。首先觀察各成份相圖並探討蒸餾殘餘曲線,找出系統存在的共沸點並了解程序可能之蒸餾路徑,作為製程設計之重要參考;接著從可行性分析結果提出兩個設計程序,藉由操作變數的改變探討最佳操作條件,再利用開環動態響應,了解干擾對程序之影響,發現系統存在高度非線性行為,提供研究控制策略參考。最後比較兩組熱力學物性資料對不同程序造成的影響,得知熱力學參數掌控整個程序之設計,因此審慎選用熱力學參數對反應蒸餾塔進行模擬時,極為重要不容忽視。


    In the conventional process design, reaction and separation are operated individually. Reactive distillation, the combined simultaneous operation of chemical reaction and distillation, is a commercially proven alternative to the conventional process especially to carry out the liquid phase chemical reactions. Compared to the conventional techniques, it offers several advantages: increased the conversion, decreased the consumption of resources and lowered the cost of operation. The purpose of this study is not only investigating the feasibility of the production of ethyl acrlylate with reactive distillation, but also analyzing the system based on two sets of thermodynamic physical properties (A, B) and comparing their results. Due to the fact that the separation operation depends on vapor-liquid equilibrium and liquid-liquid equilibrium, thermodynamic parameters play an important role on the process design. At first, we observe the phase diagrams among every component composition and study the feasibility of separation by means of the residual curve maps. Then we find out that there exist azeotropes in the system and the possible pathways of distillation in the system. Next, we have designed two processes on base of the result of feasibility. Having investigated the variation of the system manipulated variables, we find out the possibly best conditions. Furthermore we study the dynamic responses when the designed process encounters disturbance. The reactive distillation system displays the higher nonlinear properties. This result can be considered by the studiers in the control plan in the future. At last, the two thermodynamic physical properties are compared and discussed the influences on process design.

    摘要 I Abstract II 目錄 III 表目錄 VII 圖目錄 IX 第一章 前言 1 1-1丙烯酸乙酯 1 1-2反應蒸餾程序 1 1-3研究動機 2 1-4文獻回顧 3 第二章丙烯酸乙酯反應程序 4 2-1熱力學物性資料A 4 2-1.1熱力學數據與計算 4 2-1.1.1模式與參數建立 7 2-1.1.2汽液相平衡分析 7 2-1.1.3液液相平衡分析 9 2-1.2動力學數據 13 2-1.3殘餘曲線分析 14 2-1.3.1殘餘曲線介紹 14 2-1.3.2殘餘曲線圖 16 2-1.4反應殘餘曲線分析 20 2-1.5共沸物計算與分析 26 2-2熱力學物性資料B 29 2-2.1熱力學數據與計算 29 2-2.1.1汽液相平衡分析 29 2-2.1.2液液相平衡分析 29 2-2.2殘餘曲線分析 32 2-2.3反應殘餘曲線分析 35 2-2.4共沸物計算與分析 41 2-3結果比較 44 2-3.1汽液相平衡比較 44 2-3.2液液相平衡比較 44 2-3.3殘餘曲線比較 44 2-3.4反應殘餘曲線比較 45 2-3.5共沸物計算比較 45 第三章丙烯酸乙酯反應蒸餾程序 47 3-1規劃考慮 49 3-2方案一 50 3-3方案二 53 3-4比較與討論 56 第四章丙烯酸乙酯反應程序穩態模擬 57 4-1熱力學物性資料A-穩態模擬 57 4-1.1操作變數影響 57 4-1.2最適當操作條件與結果 69 4-1.3程序參數影響 73 4-1.4程序參數靈敏度分析 73 4-1.5操作變數影響 77 4-1.6最適當操作條件與結果 88 4-1.7程序參數影響 91 4-1.8程序參數靈敏度分析 92 4-2熱力學物性資料B-穩態模擬 95 4-2.1操作變數影響 95 4-2.2最適當操作條件與結果 106 4-2.3程序參數影響 109 4-2.4程序參數靈敏度分析 109 4-2.5操作變數影響 113 4-2.6最適當操作條件與結果 124 4-2.7程序參數影響 127 4-2.8程序參數靈敏度分析 127 4-3比較討論-穩態模擬 131 4-3.1程序比較 131 4-3.2熱力學參數比較 132 第五章丙烯酸乙酯反應程序動態模擬 133 5-1熱力學物性資料A-動態模擬 133 5-1.1入料流量干擾 133 5-1.2入料溫度干擾 133 5-1.3入料流量干擾 134 5-1.4入料溫度干擾 135 5-2熱力學物性資料B-動態模擬 136 5-2.1入料流量干擾 136 5-2.2入料溫度干擾 136 5-2.3入料流量干擾 137 5-2.4入料溫度干擾 138 5-3比較討論-動態模擬 139 5-3.1程序比較 139 5-3.2熱力學參數比較 142 第六章結果與討論 147 符號說明 148 參考文獻 150 附錄A半化學理論模式 155 附錄B座標轉換 157 附錄C熱力學第二定律效律 158 附錄D開環動態響應-雙入料流量干擾 160

    1.Agreda, V. H., L. R. Partin, and W. H. Heise, “High-purity ethyl acetate via reactive distribution,” Chem. Eng. Prog., 1990, 41, 40-46.
    2.Alejski, K. and J. Szymanowski, “Analysis of the chemical reaction course in distillation column,” Inz. Chem. i Proc., 1989b, 10, 55-73.
    3.Babcock, P. D. and C. W. Clump, “Distillation of chemically reactive solutions,” Res Dev. Sep. Sci., 1978, 4, 149-166.
    4.Backhaus, A. A., Continuous process for the manufacture od ester, 1921, US patent 1400849.
    5.Barbosa, D., and M. F. Doherty, “The Influence of equilibrium chemical reactions on vapor-liquid phaes diagrams,” Chem. Eng. Sci., 1988a, 43, 822-826.
    6.Barbosa, D., and M. F. Doherty, “The simple distillation of homogeneous reactive mixture,” Chem. Eng. Sci., 1988b, 43, 541-550.
    7.Barbosa, D., M. F. Doherty, “Design and minimum reflux calculations for single-feed multi-component reactive distillation column,” Chem. Eng. Sci., 1988c, 43, 1523-1537.
    8.Bessling, B., G. Schembecker, and K. H. Simmrock, “Design od process with reactive distillation line diagrams,” Ind. Eng. Chem., 1997, 36, 3032-3042.
    9.Bock, H., G. Wozny, and B. Gutsche, “Design and control of a reaction distillation column including the recoverty system,” Chem. Eng. Proc., 1997, 36, 101-109.
    10.Bogacki, M. B., K. Alejski, and J. Szymanowski, “The fast method of the solution of a reacting distillation problem,” Comput. Chem. Eng., 1989, 13, 1081-1085.
    11.Chadda, N. M. F. Malone and M. F. Doherty, “Feasibility products of kinetically controlled reactive distillation of ternary mixtures,” AIChE. J, 2000, 46, 923-936.
    12.Chadda, N., M. F. Malone, and M. F. Doherty, “Effect of chemical kinetics on feasible splits for reactive distillation,” AIChE. J., 2001, 47, 590-601.
    13.Chang, Y. A. and J. D. Seader, “Simulation of continuous reactive distillation by a homotopy continuous method,” Comput. Chem. Eng., 1988, 12, 1243-1255.
    14.Chaudhuri, B., A. A. Patwardhan, and M. M. Sharma, “Alkylation of substituted phenols with olefins and separation of close boiling phenolic substances via alyylation/dealkylation,” Ind. Eng. Chem. Res., 1990, 29, 1025-1031.
    15.Corrigan, T. E., W. R. and Ferris, “A development study of methanol acetic acid esterification,” Can. J. Chem. Eng., 1969, 47, 334-335.
    16.Cuille, P. E. and G. V. Reklaitis, “Dynamic simulation of multicomponent batch rectification with chemical reactions,” Comput. Chem. Eng., 1986, 10, 389-398.
    17.Davies, B. and G. V. Jeffreys, “The continuous trans-esterification of ethyl alcohol and butyl acetate in a sieve plate column. Part 3. Trans-esterification in a six plate sieve plate column,” Trans. IChemE., 1973, 51, 275-280.
    18.De Villiers, W. E., R. N. French, and G. J. Koplos, “Navigate phase equilibria via residue curves maps,” Chem. Eng. Prog., 2002, 98, 66-71.
    19.Doherty M. F. and M. F. Malone, “A systematic method for reaction invariants and mole balances for complex chemistries,” Comput. Chem. Eng., 2001, 25, 1199-1217.
    20.Doherty, M. F. and G. Buzad, “Reactive distillation by design,” Trans. IChemE., 1992, 70, 448-458.
    21.Duprat, F., and G. Gau, “Reactive distillation of pyridine mixtures with an organic acid. II. Parametric sensitivity and optimisation of the process,” Can. J. Chem. Eng., 1991, 69, 1327-1335.
    22.Duprat, F., R. Gassend, and G. Gau, “Reactive distillation process optimisation by empirical formulae construction,” Comput. Chem. Eng., 1988, 12, 1144-1149.
    23.Eck, B. and G. Maurer, “Modeling of phase equilibria for the evaporative Precipitation of Methacrylic Acid and Acetic Acid from Aqueous Solutions,” Fluid phase equilib., 2003, 209, 281-307.
    24.Francesconi, R. and A. Cojutti, “Liquid-vapor equilibrium in binary mixtures with associations of the components II. The acetic acid trichloroethylene system,” Chem. Eng. Sci, 1971, 26, 1341-1359.
    25.Francesconi, R. and C. Trevissoi, “Liquid-vapor equilibrium in binary mixtures with associations of the components I. General consistency criterion,” Chem. Eng. Sci, 1971, 26, 1331-1339.
    26.Gert-Jan, A. F. F. and Y. A. Liu, “Heuristic synthesis and shortcut design of separation processes using residue curve maps,” Ind. Eng. Chem., 1994, 33, 2505-2522.
    27.Gmehling, J., U. Onken, and J. Rarey-Nies, Vapor liquid equilibrium data collection, DECHEMA chemical data series, 1988.
    28.Gmehling, Jurgen, Azeotropic data, Wiley Weinheim, 2004.
    29.Gorak, A. and A. Hoffmann, “Catalytic distillation in structured packings: Methyl acetate synthesis,” AIChE J., 2001, 47, 1067-1076.
    30.Grosser, J. H., M. F. Doherty, and M. F. Malone, “Modeling of reactive distillation systems,” Ind. Eng. Chem. Res., 1987, 26, 983-989.
    31.Hayden, J. G. and J. P. O’Connell, “A generalied method for predicting second Virial coefficient,” Ind. Eng. Chem., 1975, 14, 209-216.
    32.Kinoshita, M., I. Hashimoto, and T. Takamatsu, “A new simulation procedure for multicomponent distillation column processing nonideal solutions or reactive solutions,” J. Chem. Eng. Japan, 1983, 16, 370-377.
    33.Kirk-Othmer, Kirk-Othmer Encyclopedia of chemical technology, John Wiley and Sons, Inc., New York, 2003.
    34.Komatsu, H. and C. D. Holland, “A new method of convergence for solving reacting distillation problem,” J. Chem. Eng. Japan, 1977, 4, 292-297.
    35.Komatsu, H., “Application of the relaxation method for solving reacting distillation problems,” J. Chem. Eng., 1992, 10, 200-205.
    36.Mahajani, S. M. and A. K. Kolah, “Some design aspects of reactive distillation columns,” Ind. Eng. Chem. Res., 1996, 35, 4567-4596.
    37.Melles, S., J. Grievink, and S. M. Schrans, “Optimization of the conceptual design of reactive distillation column,” Chem. Eng. Sci., 2000, 55, 2089-2097.
    38.Michelsen, M. L., “The isothermal flash problem, part I: Stability,” Fluid phase equilib., 1982, 9, 1-19.
    39.Nelson, P. A., “Countercurrent equilibrium stage separation with reaction,” AIChE J., 1971, 17, 1043-1049.
    40.Noeres, C., E. Y. Kenig, and A. Gorak, “Modelling of reactive separation processes: reactive absorption and reactive distillation,” Chem. Eng. Prog., 2003, 42, 157-178.
    41.Paludetto, R., G. Paret, and G. Donati, “Multicomponent distillation with chemical reaction. Mathematical model analysis,” Chem. Eng. Sci., 1992, 47, 2891-2896.
    42.Petrochemical Handbook, Hydrocarbon Processing, 1987, 66, 73-73.
    43.Podrebarac, G. G., F. T. T. Ng, and G. L. Rempel, “The production of diacetone alcohol with catalytic distillation. Part 1: Catalytic distillation experiments,” Chem. Eng. Sci., 1998, 53, 1067-1075.
    44.Qi, Z., A. Kolah, and K. Sundmacher, “Residue curve maps for reactive distillation systems with liquid-phase splitting,” Chem. Eng. Sci, 2002, 57, 163-178.
    45.Reuter, E., G. Wozny, and L. Jeromin, “Modelling of multicomponent batch distillation processes with chemical reaction and their control systems,” Comput. Chem. Eng., 1989, 13, 499-510.
    46.Ryan, P. J. and M. F. Doherty, “Design/Optimization of ternary heterogeneous azeotropic distillation sequence,” AIChE J., 1989, 35, 1592.
    47.Saito, S., T. Michishita, and S. Maeda, “Separation of meta- and para-xylene mixture by distillation accompanied by chemical reactions,” J. Chem. Eng. Japan, 1971, 4, 37-43.
    48.Schmitt, M., H. Hasse, K. Althaus, and H. Schoenmakers, “Synthesis of n-hexyl acetate by reactive distillation,” Chem. Eng. Proc., 2004, 43, 397-409.
    49.Schwarzer, S. and U. Hoffmann, “Experimental reaction equilibrium and kinetics of the liquid-phase butyl acrylate synthesis applied to reactive distillation simulation,” Chem. Eng. Technol., 2002, 25, 975-980.
    50.Sclokhin A. V., “Open evaporation process accompanied by chemical reaction in the liquid phase,” Theoretical Foundations Chem. Eng., 1990, 24, 103-109.
    51.Seader, J. and E. J. Henley, Separation process principles, John Wiley and Sons, Inc., New York, 1998.
    52.Simandl, j. and W. Y. Svrcek, “Extension of the simultaneous-solution and inside-outside algorithms to distillation with chemical reactions,” Comput. Chem. Eng., 1991, 15, 337-348.
    53.Sneesby, M. G., M. O. Tade, R. Datta, and T. N. Smith, “ETBE synthesis via reactive distillation: 2. Dynamic simulation and control aspects,” Ind. Eng. Chem. Res., 1997a, 36, 1870-1881.
    54.Sneesby, M. G., M. O.Tade, R. Datta, and T. N. Smith, “ETBE synthesis via reactive distillation: 1. Steady state simulation and design aspects,” Ind. Eng. Chem. Res., 1997b, 36, 1855-1869.
    55.Sridhar, L. N., M. Carlos and M. G. Ana, “Design and analysis of nonequilibrium separation process,” AIChE J., 2002, 48, 1179-1191.
    56.Sundmacher, K. and U. Hoffmann, “Activity evaluation of a catalytic distillation packing for MTBE production,” Chem. Eng. Technol., 1993, 16, 279-289.
    57.Sundmacher, K. and U. Hoffmann, “Development of a new catalytic distillation process for fuel ethers via a detailed nonequilibrium model,” Chem. Eng. Sci., 1996, 49, 2359-2368.
    58.Sundmacher, K., L. K. Rihko, and U. Hoffmann, “Classification of reactive distillation processes by dimensionless numbers,” Chem. Eng. Commun., 1994, 127, 151-167.
    59.Tang, Y. T., H. P. Huang and I. Chien, “Design of complete ethyl acetate reactive distillation system,” J. Chem. Eng. Japan., 2003, 36, 1352-1363.
    60.Taylor, R. and R. Krishna, “Modelling reactive distillation,” Chem. Eng. Sci., 2000, 55, 5183-5229.
    61.Ullmann, Ullmann’s Encyclopedia of industrial chemistry, Wiley-VCH Verlag Gmbh and Co., KGaA, 2003.
    62.Ung, S. and M. F. Doherty, “Vapor-liquid equilibrium in systems with multiple chemical reactions,” Chem. Eng. Sci., 1995, 50, 23-48.
    63.Venimadhavan, G., G. Buzad, M. F. Doherty, and M. F. Malone., “Effect of kinetics on residue curve maps for reactive distillation,” AIChE J. 1994. 40, 1814-1824.
    64.Venimadhavan, G., M. F. Malone, and M. F. Doherty, “A novel distillate policy for batch reactive distillation with application to the production of butyl acetate,” Ind. Eng. Chem. Res., 1999. 38, 714-722.
    65.Venimadhavan, G., M. F. Malone, and M. F. Doherty, “Bifurcation study of kinetic effects in reactive distillation,” AIChE J., 2004, 45, 546-556.
    66.Vora, N. and P. Daoutidis, “Dynamic and control of an ethyl acetate reacrive distillation column,” Ind. Eng. Chem. Res., 2001, 40, 833-849.
    67.Waschler, R., S. Pushpavanam, and A. Kienle, “Multiple steady state in two phase reactors under boiling conditions,” Chem. Eng. Sci., 2003, 58, 2203-2214
    68.Witczak, M., M. Grzesik, and J. Skrzypek, “Kinetyka estryfikacji kwasu akrylowego nizszymi alkoholami alifatycznymi,” Inz. Chem Proc., 2004, 24, 331-340.
    69.Yang, Z., X. Cui, and J. Gao, “Esterification-distillation of butanol and acetic acid,” Chem. Eng. Sci., 1998, 53, 2081-2088.
    70.Zhe, G., G. Mudassir, and J. W. Lee, “Feasible products in batch reactive distillation,” AIChE J., 2003, 49, 3161-3172.

    QR CODE