簡易檢索 / 詳目顯示

研究生: 徐繹佳
Yi-Chia Hsu
論文名稱: 最小潤滑劑量使用於砂紙研磨鈦合金之探討
Coated abrasive disc grinding of titanium alloy with minimum quantity lubrication
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 陳炤彰
Chao-Chang A. Chen
鍾俊輝
Chun-Hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 62
中文關鍵詞: 砂紙研磨最小潤滑劑量鈦合金表面粗糙度材料移除磨耗型態
外文關鍵詞: coated abrasive disc grinding, minimum quantity lubrication, titanium alloys, surface roughness, material removal, wear of abrasive
相關次數: 點閱:268下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究以研磨速度1500-3200 m/min、下壓力0.5-0.7 bar、最小潤滑劑量 (MQL) 噴射壓力2.5-5 bar及150號、320號及600號砂紙對鈦合金試片進行研磨。實驗過程中,配合邏輯控制系統對研磨溫度及下壓力進行即時監測。在研磨溫度超過40 ℃及下壓力超過實驗設定值之1.25倍時,噴射MQL (碳酸氫鈉與高壓空氣之混合流體),以達到降溫及潤滑的效果。此研究建立了研磨粒在研磨時的切削力學模型,並分析鈦合金試片之材料移除率 (MRR)、表面完整性及研磨粒在各時間區間下之磨耗型態。最後,利用反應曲面法 (response surface method, RSM) 得到在特定權重下之多指標優化操作參數。結果顯示,以實驗值校正後之切削力學模型可以達到83.98%的精準度。研磨後鈦合金之材料硬度可以保存~395HV0.025並延長其材料使用壽命。除此之外,研磨速度3200 m/min比1500 m/min之MRR增加34.4% (32.8 mg/min),此乃因為研磨速度提高而增加了試片與砂紙的研磨距離,因此提升了材料移除量;下壓力0.7 bar比0.5 bar的MRR增加了21.4% (29.8 mg/min),其原因為下壓力增加造成試片與砂紙間摩擦力及接觸面積提高而使材料移除增加。MQL之噴射壓力為5 bar時的材料移除率較2.5 bar時提升了6.3% (28 mg/min),推測其原因為最小潤滑劑量之噴射壓力大,於砂紙表面之清潔及降溫效果越好,使得材料移除率的提升。


    This paper presents the mechanics of grinding titanium alloys (Ti-6Al-4V) in minimum quantity lubrication to the aspects of material removal, surface integrity, temperature and wear of coated abrasives following with confirmation in experimental works. In slumping of soda-lime glass with titanium mould, surface quality and integrity were greatly improved however surface finish on the titanium mould was still problematic due to its inherence low thermal conductivity. In this work, the developed analytical model suggested the influences of grit number, grinding speed, normal load pressure and MQL on the material removal rate and surface quality. When the developed model was calibrated with experimental results, the appreciable precision level of 83.98% was resulted. The maximum material removal (89 mg/min) was produced when 150 mesh grits, (0.7 bar) normal pressure, (5 bar) blasting pressure of MQL and grinding speed of (3200 m/min) were employed. The produced fine surface (~Ra 0.1 μm) demonstrates the evolution of the adhesion, plastic deformation following the fretting and sealing actions on the workpiece surface. Whilst MQL provided instant effects to the work’s hardening and thermal softening in grinding, the improvement of microhardness (~395HV0.025) prolonged the tool life and benefited the productivity.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VI 第一章 研究介紹 1 1.1 研究背景與目標 1 第二章 文獻回顧 3 2.1 鈦合金乾式研磨 3 2.2 鈦合金濕式研磨 4 2.3 最小潤滑劑量 5 2.4 創新的研磨方法 6 2.5 研磨力學 7 2.6 鈦合金研磨製程之最佳化 7 2.7 變異數分析 8 2.8 反應曲面 9 第三章 實驗工作 10 3.1 創新的智慧化控制配合最小潤滑劑量之研磨系統 10 3.2 智慧化控制系統 10 3.3 實驗材料 11 3.4 實驗設備 13 3.5 資料擷取 14 3.6 實驗設計 15 3.7 統計與分析 16 第四章 實驗結果與討論 17 4.1 Phase A: 砂紙對鈦合金研磨之多指標探討 17 4.1.1 研磨粒之力學模型 17 4.1.2 下壓力與研磨溫度之關係 21 4.1.3 鈦合金試片之材料移除率 23 4.1.4 鈦合金試片之表面粗糙度 28 4.1.5 鈦合金試片之硬度 32 4.1.6 鈦合金研磨之多指標最佳化 33 4.2 Phase B: 砂紙研磨粒之磨耗型態 36 4.2.1 研磨粒之磨耗形態 36 4.2.2 材料移除與研磨粒磨耗之關係 43 4.2.3 砂紙表面粗糙度與研磨粒磨耗之關係 45 第五章 結論與未來展望 47 5.1 文獻回顧總結 47 5.2 研究結果總結 47 5.2.1. Phase A: 砂紙對鈦合金研磨之多指標探討 47 5.2.2. Phase B: 砂紙研磨粒之磨耗型態 48 5.3 未來展望 48 參考文獻 49 附錄一 52

    [1] Corning Gorilla Glass: Product information, Rev F 090315., Corning Incorporated, New York 2015
    [2] Leyens C., and Peters M., eds. Titanium and titanium alloys, Wiley-VCH, Weinheim 2003.
    [3] Klocke F., Kuchle A. Manufacturing process 2: grinding, honing, lapping. RWTH ed., London 2009.
    [4] Billingham J, Lauridsen J, Bryon JF. Wear mechanisms with coated abrasives. Wear 1974;28(3):331-43.
    [5] González–Santander JL. Analytic solution for maximum temperature during cut in and cut out in surface dry grinding. Applied Mathematical Modelling 2016;40(3):2356-67.
    [6] Xu X, Yu Y, Huang H. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys. Wear 2003;255(7–12):1421-6.
    [7] Axinte DA, Kwong J, Kong MC. Workpiece surface integrity of Ti-6-4 heat-resistant alloy when employing different polishing methods. Journal of Materials Processing Technology 2009;209(4):1843-52.
    [8] Cai GQ, Feng BF, Jin T, Gong YD. Study on the friction coefficient in grinding. J. of Materials Processing Technology 2002;129(1–3):25-9.
    [9] Brinksmeier E, Heinzel C, Wittmann M. Friction, Cooling and Lubrication in Grinding. CIRP Annals - Manufacturing Technology 1999;48(2):581-98.
    [10] Irani RA, Bauer RJ, Warkentin A. A review of cutting fluid application in the grinding process. International Journal of Machine Tools and Manufacture 2005;45(15):1696-705.
    [11] Setti D, Sinha MK, Ghosh S, Venkateswara Rao P. Performance evaluation of Ti–6Al–4V grinding using chip formation and coefficient of friction under the influence of nanofluids. International Journal of Machine Tools and Manufacture 2015;88(2)37-48.
    [12] Li X, Chen Z, Chen W. Suppression of Surface Burn in Grinding of Titanium Alloy TC4 Using a Self-inhaling Internal Cooling Wheel. Chinese Journal of Aeronautics 2011;24(1):96-101.
    [13] Emami M, Sadeghi MH, Sarhan AAD. Investigating the effects of liquid atomization and delivery parameters of minimum quantity lubrication on the grinding process of Al2O3 engineering ceramics. Journal of Manufacturing Processes 2013;15(3):374-88.
    [14] Zhang D, Li C, Jia D, Zhang Y, Zhang X. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding. Chinese Journal of Aeronautics 2015;28(2):570-81.
    [15] Katahira K, Ohmori H, Komotori J, Dornfeld D, Kotani H, Mizutani M. Modification of surface properties on a nitride based coating films through mirror-quality finish grinding. CIRP Annals - Manufacturing Technology 2010;59(1):593-6.
    [16] Butler-Smith PW, Axinte DA, Daine M. Ordered diamond micro-arrays for ultra-precision grinding—An evaluation in Ti–6Al–4V. Int. J. Mach. Tools and Manuf. 2011;51(1):54-66.
    [17] Beaucamp A., Namba Y., Combrinck H., Charlton P., Freeman R. Shape adaptive grinding of CVD silicon carbide, CIRP Annals - Manufacturing Technology 2014;63:317-320.
    [18] Chen X, Brian Rowe W. Analysis and simulation of the grinding process. Part II: Mechanics of grinding. International Journal of Machine Tools and Manufacture 1996;36(8):883-96.
    [19] Santhanam S., Shaw M.C. Flow Characteristics for the Complex Stress State in Metal Cutting. CIRP Annals - Manufacturing Technology 2. 1985;34:109-111.
    [20] Tang J, Du J, Chen Y. Modeling and experimental study of grinding forces in surface grinding. Journal of Materials Processing Technology 2009;209(6):2847-54.
    [21] Rabinowicz E., Friction and wear of materials. Wiley. 1965.
    [22] Bhushan B., Handbook of Micro/Nano Tribology. Second Edition: Taylor & Francis 1998
    [23] Enemuoh EU, El-Gizawy AS, Chukwujekwu Okafor A. An approach for development of damage-free drilling of carbon fiber reinforced thermosets. Int. J. Mach. Tools and Manuf. 2001;41(12):1795-814.
    [24] Roy R, A Primer on the Taguchi Method, 1st ed., Society of manufacturing engineers. 1990.
    [25] Chatterjee S, Hadi Ali S., Regression Analysis by Example, fifth ed., Wiley. 2012
    [26] Mercer AP, Hutchings IM. The deterioration of bonded abrasive papers during the wear of metals. Wear 1989;132(1):77-97.
    [27] Date SW, Malkin S. Effects of grit size on abrasion with coated abrasives. Wear 1976;40(2):223-35.
    [28] Chassaing G, Faure L, Philippon S, Coulibaly M, Tidu A, Chevrier P, Meriaux J. Adhesive wear of a Ti6Al4V tribopair for a fast friction contact. Wear 2014;320:25-33.
    [29] Liang Z, Wang X, Wu Y, Xie L, Liu Z, Zhao W. An investigation on wear mechanism of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire. Journal of Materials Processing Technology 2012;212(4):868-76.
    [30] Kuo C, Hsu Y, Chung C, Chen C-CA. Multiple criteria optimisation in coated abrasive grinding of titanium alloy using minimum quantity lubrication. Int. J. Mach. Tools and Manuf. 2016

    QR CODE