簡易檢索 / 詳目顯示

研究生: 韋乾佑
Chien-yu Wei
論文名稱: 以微電鑄法製造高填充率之微透鏡陣列模仁研究
The Study For High Fill-Factor Microlens Array Mold Insert By Using Micro Electroforming Technique
指導教授: 趙振綱
Ching-kong Chao
口試委員: 黃榮芳
Rung-fang Huang
楊錫杭
Hsiharng Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 107
中文關鍵詞: 高填充率表面粗糙度電鑄鎳模仁
外文關鍵詞: hign fill-factor, surface roughness, electroforming Ni mold
相關次數: 點閱:321下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討利用LIGA 製程來製作微透鏡,有別於一般電鑄後的微
    透鏡陣列填充率不高之限制,藉由電鑄來形成高填充率的微透鏡陣列模
    仁,進而提供更高的光線收集效率。主要製程步驟為先在矽基材上,利
    用黃光微影製程製作直徑大小為100μm 的光阻圓柱(AZ4620),再用熱
    熔完成微透鏡陣列。後續估算出電鑄時間,透過電鑄來得到高填充率的
    電鑄模仁。接著再利用田口實驗,來改善電鑄模仁的表面品質,讓粗糙
    度最低且表面品質最佳。本實驗使用簡易的旋轉塗佈機等機械設備、一
    道黃光微影製程、簡單的製作過程和低材料費、不須刻意安排光阻之間
    的排列。本論文針對設計的光罩尺寸,初始設計電鑄時間需要99 分鐘,
    可形成粗糙度0.37μm 高填充率的鎳模仁。經過田口實驗以後,電鑄時
    間變成120 分鐘,可得到表面粗糙度為0.10μm 的高填充率鎳模仁。


    In this thesis it primarily concerns about making use of the LIGA
    manufacturing process to make microlens which is different from the
    limitation of low fill-factor microlens array made by regular electroforming.
    The high fill-factor microlens array mold could be made by electroforming
    that provides more light efficiency. The main process is using
    photo-lithography manufacturing process to get photo resist
    cylinder(AZ4620)whose diameter is 100μm on silicon wafer, then using
    thermo-reflow to get mirolens array.
    After that, we calculate the time of electrofoming to make the
    electroforming mold which has 100% fill-factor. We also do analysis by
    Taguchi method to improve the surface quality of electroforming mold
    which has lowest roughness and best surface quality. This experiment use
    simple spin coater, one photo-lithography manufacturing process, simple
    manufacture process and does not have sedulously to arrange between photo
    resisits. The designed photomask in this thesis needs 99 minutes for the
    initial design electroforming time and forms nickel mold which has
    roughness 0.37μm and high fill-factor. After Taguchi experiment, the
    electroforming time is 120 minutes and the nickel mold is obtained with
    surface roughness 0.10μm and high fill factor.

    中文摘要………………………………………………………………..Ⅰ 英文摘要………………………………………………………………..Ⅱ 誌謝..........................................................................................................Ⅲ 目錄……………………………………………………………………..Ⅳ 圖表目錄………………………………………………………………..Ⅶ 第一章 緒論……………………………………………………………..1 1.1 前言……………………………………………………………...1 1.2 研究動機與目的………………………………………………...4 1.3 LIGA 製程技術簡介……………………………………………5 1.3.1 LIGA 製程………………………………………………...5 1.3.2 LIGA-Like 製程…………………………………………….7 1.3.3 Quasi-LIGA-Like 製程…………………………………… 9 1.4 論文架構……………………………………………………….10 第二章 微透鏡製程原理與實驗架構…………………………………11 2.1 微透鏡之分類與折射式微透鏡製程………………………….11 2.2 高填充率微透鏡之相關製程比較…………………………….21 2.3 實驗流程與光罩設計……………………….………………....24 2.3.1 引言………………………………………………………..24 2.3.2 實驗流程…………………………………………………..26 2.4 影響熱熔品質的參數介紹…………………………………….37 2.5 設備簡介……………………………………………………….38 第三章 微電鑄原理與表面品質的最佳化……………………………42 3.1 引言…………………………………………………………….42 3.2 電鑄技術基本原理…………………………………………….44 3.2.1 電鑄與電鍍的差異……………………………………….45 3.2.2 潤濕作用…………………………………………………47 3.3 微電鑄理論…………………………………………………...49 3.4 極化與氫氣過電壓…………………………………………...55 3.4.1 極化的影響………………………………………………56 3.4.2 影響極化作用的因素……………………………………56 3.4.3 氫氣電壓…………………………………………………56 3.5 效率與酸性…………………………………………………...58 3.6 實驗流程與設備簡介………………………………………...59 3.6.1 實驗流程…………………………………………………59 3.6.2 設備簡介……………………………………….………...63 3.6.3 鍍液……………………………………………………....65 第四章 實驗結果檢測與討論………………………………………....68 4.1 實驗量測檢驗設備……………………………………………..68 4.1.1 光學顯微鏡(Microscope) 及其量測原理……...68 4.1.2 3D 共軛焦顯微鏡………………………………………..70 4.1.3 3D 輪廓粗度儀……………………………………….…71 4.2 田口方法的應用………………………………………………..74 4.2.1 電鑄時間的影響比較……………………………………..74 4.2.2 田口方法理論介紹………………………………………..74 4.2.3 實驗方法與操作步驟…………………………..………....76 4.2.4 實驗結果與討論…………………………………………..80 4.3 微透鏡陣列製作………………………………………………..85 第五章 結論與未來展望……………………………………………....89 5.1 結論…………………………………………………………….89 5.2 未來展望……………………………………………………….91 參考文獻………………………………………………………………..92 附錄…………………………..……………………………………..…..95 作者簡介................................................................................................107

    1. S. Sizinger and J. Jahns, Microoptics, Wiley-Vch Verlag, 1999.
    2. 張秀鑫,TFT-LCD 模組設計概論,全華科技圖書股份有限公司,2002。
    3. T. Shiono, K.Setsune, O. Yamazaki and K. Wasa, “Rectangular-apertured
    micro-Fresnel lens arrays fabricated by electron-beam lithography,”
    Applied Optics, 26(3), pp. 587-591, 1987.
    4. 林哲平, 以微影製程開發新型光學微透鏡陣列模仁之研究,台灣科技
    大學博士論文, 2004。
    5. W. Ehrfeld, P. Baley, F. Gotz, J. Mohr, D. Munchmeyer and W. Schelb,
    “Process in deep-etch synchrotron radiation lithography,” Journal of
    Vacuum Science Technology B, 6(1), pp. 178-182, 1988.
    6. 林敏雄、李篤育、黃瑞星, 我國微系統技術發展策略, 工程月刊, 2-16,
    July, 1999.
    7. 周敏傑、呂春福、王紀雯、何淑鈴、葉信宏, 微結構之合金電鑄技術,
    機械工業雜誌, 150, August 1998.
    8. W. Menz, W. Bacher, W. Bier, O.F. Hagena, J. Mohr and D. Seidel,
    “Combination of LIGA with other microstructure technologies,”
    Microsystem technology, 2, pp.166, 1996.
    9. E. Gogolids, P. Vauvert, A. Rhalllabi and G. Turban, “Complete Plasma
    Physics, Plasma chemistry, and Surface Chemistry Simulation of SiO2
    and Si etching in CF4 Plasmas,” Microelectronic Engineering, 41-42, pp.
    391-394, 1998.
    10. R. Williams, S. Richard and Muller, “Etch Rate for Micromachining
    Processing,” Journal of Microelectromechanical Systems, 5(4), pp.
    256-269, 1996.
    11. 魏茂國, 準分子雷射應用於奈米加工技術簡介, Newsletter of the
    Chinese Society of Mechanism and Machine theory, 1-6, August 1998.
    12. L. Bernd, “Thick layer resists for surface micromachining,” Micromech
    Microeng, 10, pp. 108-115, 2000.
    13. G.A. Malone, “New Developments in Electroformed Nickel-Based
    Structural Alloys,” Plating and Surface Finishing, pp. 50-56, 1987.
    14. 施騰凱, 折射式微光學元件之新製程研發,國立中正大學光機電整
    合研究所碩士論文, 2004。
    15. 李東諺, 微小元件於LIGA LIKE 製程上之研究,國立中央大學光電
    科學研究所碩士論文, 2001。
    16. M. Wakaki, “Microlenses And Microlens Arrays Formed on A Glass
    Plate by Use of A CO2 Laser,” Applied Optics, 37, pp. 627-631,
    1998.
    17. S. Haselbeck, H. Schreiber, J. Schwider and N. Streibl, “Microlenses
    fabricated by melting a photoresist on a base layer,” Optical
    Engineering, 32(6), pp. 1322-1324, 1993.
    18. Q. Xu, L. Yang, X. Shu and G. Yang, “Step heat-forming method for
    expanding the N.A. range of refractive microlens,” Acta Optica Sinica,
    18(8), pp. 1128-1133, 1998.
    19. H. Ottevaere, “Two Dimensional Plastic Microlens Arrays by Deep
    Lithography with Protons: Fabrication And Characterization,” Journal
    of Optics A: Applied Optics, (4), pp. 22-28, 2002.
    20. W. R. Cox, “Micro-Optics Fabrication by Ink-Jet Printing,” Optics
    &Photonics News, pp. 32-35, 2001.
    21. D.H. Raguin, G. Gretton, D. Mauer, E. Piscani, E. Prince, T.R.M.
    Sales, D. Schertler, “Anamorphic and aspheric microlenses and
    microlens arrays for telecommunication applications,” Optical Fiber
    Communication Conference and Exhibit, 1, pp. 17-22, March 2001.
    22. K.H. Jeong, L.P. Lee, “A new method of increasing numerical aperture
    of microlens for biophotonic MEMS,” Microtechnologies in Medicine
    & Biology 2nd Annual International IEEE-EMB Special Topic
    Conference on, 2-4, pp. 380-383, May 2002.
    23. Li-Wei Pan, “Cylindrical Plastic Lens Array Fabricated by A Micro
    Intrusion Process,” The Twelfth IEEE International Conference, IEEE
    Journal of Micro Electro Mechanical Systems, pp. 217-221, 1999.
    24. N.S. Ong, Y.H. Koh, Y.Q. Fu, “Microlens array produced using hot
    embossing process,” Microelectronic Engineering, 60(3-4), pp.
    365-379, April 2002.
    25. Sung-Il Chang, Jun-Bo Yoon, “Shape-controlled, high fill-factor
    microlens arrays fabricated by a 3D diffuser lithography and plastic
    replication method,” Optics Express, 12(25), pp. 6366 – 6371, 2004.
    26. Thick Film Resist AZ P4000 Series, AZ Electronic Materials, 2003.
    27. 莊達仁,VLSI製造技術,高立出版社,2000。
    28. 吳憲明,精密電鑄技術市場應用-雷射加工暨精密電鑄技術研討會,
    台大慶齡工業中心, 52, 1997。
    29. 楊啟榮, 微機電製程領域之精密電鑄技術,中山大學機械工程博士
    論文。
    30. 楊啟榮, 微系統LIGA 製程之精密電鑄技術, 科儀新知第二十二卷
    第一期, pp. 4-16, 2000.
    31. 蘇癸陽,實用電鍍理論與實際,復文書局,2003。
    32. 張瑞宗, 以厚膜光阻技術製備高縱橫比銅導柱之研究,交通大學材
    料科學研究所碩士論文, 1999。
    33. 張瑞斌, 微電鍍技術及其在生物晶片之應用,國立成功大學工程科
    學系碩士論文, 2001。
    34. P.W. Atkins, “Physical Chemistry (fourth ed.),” Freeman, New York,
    1990.
    35. J. Brockris, D.M. Drazie, Electro-Chemical Science, Taylor and Francis
    Ltd, London, 1972.
    36. 楊聰仁,材料基礎實驗(一)電鍍鎳與無電鍍鎳實驗。
    37. K.H. Ahn, K.G. Song, H.Y. Cha, and I.T. Yeom, “Removal of ions in
    nickel electroplating rinse water using low pressure nanofiltration,”
    Desalination, 122(1), pp. 77-84, May 25, 1999.
    38. M. Madou, “Fundamental of Microfabrication,” New York, CRC Press,
    1997.
    39. 王春和,田口方法於線外品管多種品質特性製程最佳化之應用研
    究,交通大學工業工程研究所碩文論文, 1993。

    QR CODE