簡易檢索 / 詳目顯示

研究生: 吳崧瑞
Wu-Sung-Ruei
論文名稱: N-乙烯基-2-吡咯烷酮對矽水膠隱形眼鏡之眼科性能的影響
The influence of N-vinyl-2-pyrrolidone on the ophthalmic performance of silicone hydrogel contact lenses
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 鄭詠馨
Yung-Hsin Cheng
劉定宇
Ting-Yu Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 82
中文關鍵詞: 矽水膠隱形眼鏡反應型矽酮寡聚物聚(乙二醇)甲基丙烯酸甲酯N-乙烯基-2-吡咯烷酮透氧率
外文關鍵詞: silicon hydrogel, contact lenses, PDMS, PEGMA, NVP, Oxygen Permeability
相關次數: 點閱:230下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)作為基材,與異佛爾酮二異氰酸酯(Isophorone diisocyanate, IPDI)及聚(乙二醇)甲基丙烯酸酯(PEGMA)進行聚合反應,合成PDMS-IPDI-PEGMA矽水膠共聚物(PIP macromer)。將不同比例之N-乙烯基-2-吡咯烷酮(N-Vinyl-2-pyrrolidone, NVP)加入至不同比例之 PIP macromer,並加入交聯劑乙二醇二甲基丙烯酸酯(EGDMA)和光起始劑2-羥基-2-甲基-1-苯基-1-丙酮(PI-1173)並以紫外光照射,形成新形態矽水膠共聚物PDMS-IPDI-PEGMA-NVP,並探討不同比例的矽水膠隱形眼鏡之可見光透光率測定(Transmittance)、傅立葉紅外線光譜分析(FTIR)、接觸角測定(Contact angle)、平衡含水量測定(EWC)、透氧係數測定(Dk)、拉伸試驗(Tensile test)、固態材料表面電位分析(zeta potential)、及生物相容性測試。研究結果表明,比例越高之 PIP macromer 隱形眼鏡透氧率顯著提升,含水量隨著 NVP 濃度的上升而增加。在任一比例下矽水膠隱形眼鏡的可見光透光率皆高於97%。拉伸試驗和接觸角測定會隨著NVP濃度的增加而有下降的趨勢。除此之外,細胞毒性測試結果顯示出良好的細胞成長率。因此,本論文所研究之隱形眼鏡材料具有良好的開發潛力。


    In this study, polydimethylsiloxane (PDMS) was used as the base material, combined with isophorone diisocyanate (IPDI) and poly(ethylene glycol) methacrylate (PEGMA), was polymerized to synthesized PDMS-IPDI-PEGMA silicone hydrogel copolymer (PIP macromer). The resultant macromers were further reacted with N-vinyl-2-pyrrolidone (NVP) at varying ratios using ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent and 2-hydroxy-2-methyl-1-phenyl-1-propanone (PI-1173) as the photoinitiator. After curing with ultraviolet light, the mechanical properties and biocompatibility of the resultant contact lenses were evaluated. The results revealed the oxygen permeability increased with the content of PIP macromer, while water content increased with increasing NVP content. All the contact lenses exhibited light transmittance above 97% for all compositions. Tensile testing and contact angle measurements showed a decreasing trend with increasing NVP concentration. Additionally, the cytotoxicity test demonstrated non-cytotoxicity. Thus, the contact lens materials in this study exhibit promising development potential.

    誌謝 I 摘要 I Abstract II 目錄 IV 圖索引 VIII 表索引 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第貳章 文獻回顧 3 2.1 水膠的介紹 3 2.2 水膠的種類 4 2.2.1 化學性水膠 (Chemically cross-linked gels) 4 2.2.2 物理性水膠 (Physically cross-linked gels) 5 2.3 硬式隱形眼鏡 6 2.3.1 硬性透氧型鏡片(Rigid gas permable lens) 6 2.3.2 聚甲基丙烯酸甲酯 (poly (methyl methacrylate) 7 2.4 軟性隱形眼鏡 8 2.5 隱形眼鏡的特殊性質 9 2.5.1 含水量 9 2.5.2 透氧性 10 2.5.3 光學透明度 11 2.5.4 表面濕潤性 11 2.5.5 蛋白質吸附 12 2.6 高分子材料表面改質 13 2.6.1 表面溶液法 13 2.6.2 UV法 13 2.6.3 電漿法 13 2.6.4 臭氧法 14 2.6.5 熱處理法 14 2.7 紫外光硬化交聯處理 14 2.7.1 單體或寡聚物(Monomer and Oligomers) 14 2.7.2 光起始劑(Photoinitiator) 15 2.7.3 交聯劑(Crosslinker) 15 2.8 Polydimethylsilioxane PDMS 16 2.9 Isophorone diisocyanate IPDI 17 2.10 Poly(ethylene glycol) methacrylate PEGMA 18 2.11 1-Vinyl-2-pyrrolidone NVP 19 第參章 實驗材料與方法 20 3.1 實驗材料 20 3.2 實驗設備 22 3.3 實驗流程圖 24 3.4 實驗原理圖 25 3.5 實驗方法 26 3.6 物性分析 28 3.6.1 可見光透光率測定 (Transmittance) 28 3.6.2 傅立葉紅外線光譜分析(Fourier Transform Infrared Spectrometer, FT-IR) 29 3.6.3 接觸角測試 (Contact angle measurement) 30 3.6.4 平衡含水量測定 (Equilibrium water content) 31 3.6.5 透氧係數測定 (Oxygen permeability) 32 3.6.6 拉伸試驗 (Tensile test) 34 3.6.7 固態材料表面電位分析 (Zeta potential) 35 3.7 生物相容性試驗 (Biocompatibility) 36 3.7.1 蛋白質吸附 (Protein adsorption) 36 3.7.2 細胞培養 38 3.7.3 細胞存活率分析 (MTT Assay) 39 3.7.4 細胞毒性試驗 (In-vitro cytotoxicity) 40 第肆章 結果與討論 42 4.1 物性分析 42 4.1.1 可見光透光率測定 (Transmittance) 42 4.1.2 傅立葉紅外線光譜分析(Fourier Transform Infrared Spectrometer, FT-IR) 44 4.1.3 接觸角測試 (Contact angle measurement) 45 4.1.4 平衡含水量測定 (Equilibrium water content) 48 4.1.5 透氧係數測定 (Oxygen permeability) 50 4.1.6 拉伸試驗 (Tensile test) 52 4.1.7 固態材料表面電位分析 (Zeta potential) 54 4.2 生物相容性試驗 (Biocompatibility) 56 4.2.1 蛋白質吸附 (Protein adsorption) 56 4.2.2 細胞毒性試驗 (In-vitro cytotoxicity) 58 第伍章 結論 61 參考文獻 63

    [1] Zhao, Z., Xie, H., An, S., & Jiang, Y., The relationship between oxygen permeability and phase separation morphology of the multicomponent silicone hydrogels, The Journal of Physical Chemistry B, vol. 118, no. 50, pp.14640-14647, 2014
    [2] Augst, A. D., Kong, H. J., & Mooney, D. J., Alginate hydrogels as biomaterials, Macromolecular bioscience, vol. 6, no. 8, pp. 623– 633, 2006
    [3] Mikos, A. G., Sarakinos, G., Leite, S. M., Vacant, J. P., & Langer, R., Laminated 3-dimensional biodegradable foams for use in tissue engineering, Biomaterials, vol. 14, no. 5, pp. 323-330, 1993
    [4] Shoichet, M. S., Polymer scaffolds for biomaterials applications, Macromolecules, vol. 43, no. 2, pp. 581-591, 2010
    [5] Debord, J. D., & Lyon, L. A., Thermoresponsive photonic crystals, The Journal of Physical Chemistry B, vol. 104, no. 27, pp. 6327-6331, 2000
    [6] Willis, S. L., Court, J. L., Redman, R. P., Wang, J. H., Leppard, S. W., O’Byrne, V. J., & Stratford, P. W., A novel phosphorylcholine-coated contact lens for extended wear use, Biomaterials, vol. 22, no. 24, pp. 3261-3272, 2001
    [7] Begley C.G., Caffery B., Nichols K.K., & Chalmers R., Responses of contact lens wearers to a dry eye survey, Optometry and Vision Science, vol. 77, no. 1, pp. 40-46, 2000
    [8] Chen, J. S., Liu, T. Y., Tsou, H. M., Ting, Y. S., Tseng, Y. Q., & Wang, C. H., Biopolymer brushes grown on PDMS contact lenses by in situ atmospheric plasma-induced polymerization, Journal of Polymer Research, vol. 24, pp. 1-9, 2017
    [9] Richdale, K., Sinnott, L. T., Skadahl, E., & Nichols, J. J., Frequency of and factors associated with contact lens dissatisfaction and discontinuation, Cornea, vol. 26, no. 2, pp. 168-174, 2007
    [10] Seitz M.E., Wiseman M.E., Hilker I., Loos J., Tian M., Li J., Goswami M., Litvinov V. M., Curtin S., & Bulters M., Influence of silicone distribution and mobility on the oxygen permeability of model silicone hydrogels, Polymer, vol. 118, pp. 150-162, 2017
    [11] Awasthi, A. K., Meng, F. R., Künzler, J. F., Linhardt, J. G., Papagelis, P., Oltean, G., & Myers, S. A., Ethylenically unsaturated polycarbosiloxanes for novel silicone hydrogels: synthesis, end-group analysis, contact lens formulations, and structure–property correlations, Polymers for advanced technologies, vol. 24, no. 6, pp. 557-567, 2013
    [12] Fonn, D., Dumbleton, K., Jalbert, I., & Sivak, A., Benefits of silicone hydrogel lenses, Contact Lens Spectrum, vol. 21, pp. 38, 2006
    [13] Nicolson, P. C., Continuous wear contact lens surface chemistry and wearability, Eye & Contact Lens, vol. 29, no. 1, pp. 30-32, 2003
    [14] Tran, N. P. D., & Yang, M. C., The ophthalmic performance of hydrogel contact lenses loaded with silicone nanoparticles, Polymers, vol. 12, no. 5, pp. 1128, 2020
    [15] Rudy A., Kuliasha C., Uruena J., Rex J., Schulze K.D., Stewart D., Angelini T., Sawyer W., & Perry S.S., Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS), Tribology Letters, vol. 65, pp. 1-11, 2017
    [16] Lee D., Yang S., Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity, Sensors and Actuators B: Chemical, vol, 162, no. 1, pp. 425-434, 2012
    [17] Wang, J., & Li, X, Preparation and characterization of interpenetrating polymer network silicone hydrogels with high oxygen permeability, Journal of applied polymer science, vol. 116, no. 5, pp. 2749-2757, 2010
    [18] Lin, C. H., Yeh, Y. H., Lin, W. C., & Yang, M. C., Novel silicone hydrogel based on PDMS and PEGMA for contact lens application, Colloids and Surfaces B: Biointerfaces, vol. 123, pp. 986-994, 2014
    [19] Kamath, K. R., & Park, K., Biodegradable hydrogels in drug delivery, Advanced drug delivery reviews, vol. 11, no. 1-2, 1993
    [20] Sun, Y., Nan, D., Jin, H., & Qu, X., Recent advances of injectable hydrogels for drug delivery and tissue engineering applications, Polymer Testing, vol. 81, pp. 106283, 2020
    [21] Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A review, Journal of advanced research, vol. 6, no. 2, pp. 105-121, 2015
    [22] Ford, J. L., Rubinstein, M. H., McCaul, F., Hogan, J. E., & Edgar, P. J., Importance of drug type, tablet shape and added diluents on drug release kinetics from hydroxypropylmethylcellulose matrix tablets, International journal of pharmaceutics, vol. 40, no. 3, pp. 223-234, 1987
    [23] Mitura, S., Sionkowska, A., & Jaiswal, A., Biopolymers for hydrogels in cosmetics, Journal of Materials Science: Materials in Medicine, vol. 31, pp. 1-14, 2020
    [24] Feksa, L. R., Troian, E. A., Muller, C. D., Viegas, F., Machado, A. B., & Rech, V. C., Hydrogels for biomedical applications, Nanostructures for the Engineering of Cells, Tissues and Organs, pp. 403-438, 2018
    [25] Begley, C. G., Caffery, B., Nichols, K. K., & Chalmers, R., Responses of contact lens wearers to a dry eye survey, Optometry and Vision Science, vol. 77, no. 1, pp. 40-46, 2000
    [26] Zu YG, Zhang Y, Zhao XH, Shan C, Zu SC, Wang KL, Li Y, Ge YL, Preparation and characterization of chitosan--polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin, International journal of biological macromolecules, vol. 50, no. 1, pp. 82-87, 2012
    [27] Moad, G., Rizzardo, E., & Thang, S. H., Radical addition–fragmentation chemistry in polymer synthesis, Polymer, vol. 49, no. 5, pp. 1079-1131, 2008
    [28] Andreopoulos, F. M., Beckman, E. J., & Russell, A. J., Light-induced tailoring of PEG-hydrogel properties, Biomaterials, vol. 19, no. 15, pp. 1343-1352, 1998
    [29] Bustamante-Torres, M., Romero-Fierro, D., Arcentales-Vera, B., Palomino, K., Magaña, H., & Bucio, E., Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials, Gels, vol. 7, no. 4, pp. 182, 2021
    [30] Mathur, A. M., Hammonds, K. F., Klier, J., & Scranton, A. B., Equilibrium swelling of poly (methacrylic acid-g-ethylene glycol) hydrogels: Effect of swelling medium and synthesis conditions, Journal of controlled release, vol. 54, no. 2, pp. 177-184, 1998
    [31] Maitra, J., & Shukla, V. K., Cross-linking in hydrogels-a review, American Journal of Polymer Science, vol. 4, no. 2, pp. 25–31, 2014
    [32] Rinaudo M., Main properties and current applications of some polysaccharides as biomaterials. Polymer international, vol. 57, no. 3, pp. 397-430, 2008
    [33] McMahon T. T., & Zadnik K., Twenty-five years of contact lenses: the impact on the cornea and ophthalmic practice, Cornea, vol. 19, no. 5, pp. 730-740, 2000
    [34] Xu J., Xue Y., Hu G., Lin T., Gou J., Yin T., He H., Zhang Y., & Tang X.A., A comprehensive review on contact lens for ophthalmic drug delivery, Journal of Controlled Release, vol. 281, pp. 97-118, 2018
    [35] Schifrin L.G., Rich W.J., The contact lens industry: structure, competition, and public policy. DIANE Publishing, vol. 31, 1984
    [36] Efron, N., Obituary—Rigid contact lenses, Contact Lens and Anterior Eye, vol. 33, no.5, pp. 245-252, 2010
    [37] Kakisu, K., Matsunaga, T., Kobayakawa, S., Sato, T., & Tochikubo, T., Development and efficacy of a drug-releasing soft contact lens, Investigative ophthalmology & visual science, vol. 54, no. 4, pp. 2551-2561, 2013
    [38] Luensmann, D., & Jones, L., Protein deposition on contact lenses: the past, the present, and the future, Contact Lens and Anterior Eye, vol. 35, no. 2, pp. 53-64, 2012
    [39] Harvitt, D. M., & Bonanno, J. A, Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia, Optometry and vision science: official publication of the American Academy of Optometry, vol. 76, no. 10, pp. 712-719, 1999
    [40] Nicolson, P. C., & Vogt, J., Soft contact lens polymers: an evolution, Biomaterials, vol. 22, no. 24, pp. 3273-3283, 2001
    [41] Teichroeb, J. H., Forrest, J. A., Ngai, V., Martin, J. W., Jones, L., & Medley, J., Imaging protein deposits on contact lens materials, Optometry and Vision Science, vol. 85, no. 12, pp. 1151-1164, 2008
    [42] Kim, J., Conway, A., & Chauhan, A., Extended delivery of ophtha lmic drugs by silicone hydrogel contact lenses, Biomaterials, vol. 29, no. 24, pp. 2259-2269, 2008
    [43] Lai, Y. C., & Valint Jr, P. L., Control of properties in silicone hydrogels by using a pair of hydrophilic monomers, Journal of applied polymer science, vol. 61, no. 12, pp. 2051-2058, 1996
    [44] Bennett, E. S., & Weissman, B. A., Clinical contact lens practice, Lippincott Williams & Wilkins, 2005
    [45] Refojo, M. F., & Holly, F. J., Tear protein adsorption on hydrogels: a possible cause of contact lens allergy, Eye & Contact Lens, vol. 3, no. 1, pp. 23-36, 1977
    [46] Efron, N., Contact Lens Complications E-Book, Elsevier Health Sciences, 2018.
    [47] Morgan, P. B., Efron, N., Toshida, H., & Nichols, J. J., An international analysis of contact lens compliance, Contact Lens and Anterior Eye, vol. 34, no. 5, pp. 223-228, 2011
    [48] Mannis, M. J., Zadnik, K., Coral-Ghanem, C., & Kara-José, N., Contact lenses in ophthalmic practice. Springer Science & Business Media, 2004
    [49] Berthier, J. Micro-drops and digital microfluidics (Second Edition), Micro and Nano Technologies, pp. 457-492, 2013
    [50] Shirafkan, A., Woodward, E. G., Port, M. J., & Hull, C. C., Surface wettability and hydrophilicity of soft contact lens materials, before and after wear, Ophthalmic and Physiological Optics, vol. 15, no. 5, pp. 529-532, 1995
    [51] Janssen, P. T., & Van Bijsterveld, O. P., Origin and biosynthesis of human tear fluid proteins, Investigative ophthalmology & visual science, vol. 24, no. 5, pp. 623-630, 1983
    [52] Jacob, J. T., Biocompatibility in the development of silicone-hydrogel lenses, Eye & contact lens, vol. 39, no. 1, pp. 13-19, 2013
    [53] Paul, D. R., & Robeson, L. M., Polymer nanotechnology: nanocomposites. Polymer, vol. 49, no. 15, pp. 3187-3204, 2008
    [54] Deng, J., Wang, L., Liu, L., & Yang, W., Developments and new applications of UV-induced surface graft polymerizations, Progress in polymer science, vol. 34, no. 2, pp. 156-193, 2009
    [55] Kim, Y. J., Taniguchi, Y., Murase, K., Taguchi, Y., & Sugimura, H., Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding, Applied Surface Science, vol. 255, no. 6, pp. 3648-3654, 2009
    [56] Liston, E. M., Martinu, L., & Wertheimer, M. R., Plasma surface modification of polymers for improved adhesion: a critical review, Journal of adhesion science and technology, vol. 7, no. 10, pp. 1091-1127, 1993
    [57] Fujimoto, K., Takebayashi, Y., Inoue, H., & Ikada, Y., Ozone‐induced graft polymerization onto polymer surface, Journal of Polymer Science Part A: Polymer Chemistry, vol. 31, no. 4, pp. 1035-1043, 1993
    [58] Gruber, H. F., Photoinitiators for free radical polymerization, Progress in polymer Science, vol. 17, no. 6, pp. 953-1044, 1992
    [59] Fouassier, J. P., & Lalevée, J., Photoinitiators for polymer synthesis: scope, reactivity, and efficiency, John Wiley & Sons, 2012
    [60] Khademhosseini, A., Langer, R., Borenstein, J., & Vacanti, J. P., Microscale technologies for tissue engineering and biology, Proceedings of the National Academy of Sciences, vol. 103, no. 8, pp. 2480-2487, 2006
    [61] Lee, S. Y., Lee, J. S., & Kim, B. K., Preparation and properties of water‐borne polyurethanes, Polymer International, vol. 42, no. 1, pp. 67-76, 1997
    [62] Chen, Y., Kang, E. T., Neoh, K. G., Wang, P., & Tan, K. L., Surface modification of polyaniline film by grafting of poly (ethylene glycol) for reduction in protein adsorption and platelet adhesion. Synthetic metals, vol. 110, no. 1, pp. 47-55, 2000
    [63] Parambil, A., Puttaiahgowda, Y., & Shankarappa, P., Copolymerization of N-Vinyl pyrrolidone with methyl methacrylate by Ti (III)-DMG redox initiator, Turkish Journal of Chemistry, vol. 36, no. 3, pp. 397-409, 2012
    [64] Lai, Y. C., & Valint Jr, P. L., Control of properties in silicone hydrogels by using a pair of hydrophilic monomers, Journal of applied polymer science, vol. 61, no. 12, pp. 2051-2058, 1996
    [65] Ferraris, S., Cazzola, M., Peretti, V., Stella, B., & Spriano, S., Zeta potential measurements on solid surfaces for in vitro biomaterials testing: surface charge, reactivity upon contact with fluids and protein absorption, Frontiers in bioengineering and biotechnology, vol. 6, pp. 60, 2018

    QR CODE