簡易檢索 / 詳目顯示

研究生: 劉子魁
Tzu-Kuei Liu
論文名稱: 基材機械強度對骨類細胞之增生與分化的影響
Characterization of Cell Behaviors on PDMS Membranes with Different Mechanical Properties
指導教授: 何明樺
Ming Hua Ho
口試委員: 曾婷芝
Ting chih Tseng
李忠興
Zhong Xing Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 138
中文關鍵詞: 機才機械強度細胞增生及分化
外文關鍵詞: mechanical strength, cell viability, osteogenic differentiation
相關次數: 點閱:289下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用聚二甲基矽氧烷(polydimethyl siloxane, PDMS)作為骨細胞培養基材,藉由調控寡聚物與硬化劑之間的重量比,製備出不同機械強度的膜材,以比較不同機械強度基材對細胞貼附及增生的影響。然而PDMS材料表面的高疏水性並不利於細胞貼附,所以本實驗藉由在UV照射結合臭氧改質的方式在材料表面產生大量自由基,藉由不同的操作條件,可以使不同機械強度的PDMS均達到相同的親水性,UV-臭氧改質亦未對材料表面粗糙度造成明顯改變,也就是說,機械強度為本研究中唯一影響細胞貼附及活性的變因。
    在細胞的增生實驗中,於疏水的PDMS表面上,材料的機械強度未對骨母細胞的活性與分化造成影響,這代表唯有當細胞與材料間的親和力夠高,細胞表現才會受到材料表面性質的影響。在親水PDMS上以一般培養液進行培養,我們發現骨母細胞在高硬度材料上有較好的細胞增生情形,掃描式電子顯微鏡(SEM)的照片也顯示骨母細胞在高機械強度PDMS上的細胞密度及貼附情況較佳,此結果是因為細胞與材料有較好的交互作用。而當改用骨分化培養液進行骨母細胞培養時,高機械強度對骨母細胞活性的促進效果被更進一步地提高,這顯示環境越有利於骨分化情況,材料機械強度對細胞增生的促進性越明顯。
    在一般培養液中培養骨母細胞後,我們發現其鹼性磷酸酶的表現量極低,且機械強度對鹼性磷酸酶分泌量的影響不大,相反的,在骨誘導培養液中,骨母細胞鹼性磷酸酶表現量隨著機械強度上升而明顯增加,此結果與細胞活性的趨勢相仿,表示細胞之骨分化程度越高,材料機械強度提高對其骨分化表現得促進效果也會越明顯。
    接著我們使用牙髓幹細胞進行細胞實驗,實驗結果顯示無論使用一般或骨誘導培養液,牙髓幹細胞在不同機械強度下的材料並沒有明顯的增生情形,機械強度亦未對細胞增生造成任何差異。長時間的牙髓幹細胞培養後,可從元素分析結果發現細胞周圍的鈣沉積量隨著PDMS機械強度提高而增加,而從SEM照片中可以看出牙髓幹細胞與較硬材料之間有較好的細胞交互效應,由於鈣沉積為骨分化之中後期指標,因此我們推論材料機械強度的提升對牙髓幹細胞的後期骨分化有提升作用。與骨母細胞培養的結果相較,推測這是因為牙髓幹細胞與PDMS間的作用力遠低於骨母細胞,即骨母細胞對材料表面性質有著更高的辨認效果,故機械強度的影響對牙髓幹細胞不如骨母細胞明顯,也就是說,牙髓幹細胞需要更長的培養時間才能對材料表面特性產生反應。另一個可能性是牙髓幹細胞的骨分化程度較骨母細胞低,故材料機械性質並未對其增生與分化的影響也較為有限。


    In this research, PDMS substrates with different mechanical strength were applied for the culture of osteoblastic cells. To study the basic mechanism which would affect the attachment and proliferation of osteoblasts, the hydrophilicity of PDMS was controlled by UV light combined with ozone treatment. After the UV-ozone treatment, the PDMS surfaces with various mechanical properties presented the same hydrophilicity by applying different treatment conditions. Besides, UV-ozone treatment did not change the topography of PDMS, indicating that mechanical strengths would be the only factor which may influence cultured osteoblastic cells.
    The mechanical strengths did not influence the viability and differentiation of osteoblasts on pristine PDMS. On the contrary, the cultured osteoblasts showed higher viability on PDMS which was hydrophilic. The results reveal that the cells would respond to material properties only when the cell-material interaction is high enough, which was in agreement with the results of cell attachment on hydrophilic PDMS in SEM images.
    When the osteogenic medium was applied, the cell viability increased by increasing the mechanical strength of PDMS more significantly. Since the osteogenic medium can enhance the osteogenic level of cultured osteoblasts, the promotion of osteogenesis caused by stiff PDMS was more efficient if the cells were more osteogenic.
    In normal culture medium, the ALP expression of cultured osteoblasts was low on all the PDMS substrates, which was not related to the mechanical strength of PDMS. On the other hand, ALP activity was significantly enhanced by increasing PDMS stiffness in osteogenic medium. This tendency was consistent with that in cell viability, meaning that the early osteogenic differentiation would be more promoted by increasing the stiffness of PDMS when osteoblasts were cultured in a mineralization-induced environment.
    The viability of cultured dental pulp stem cells (DPSC) would not be influenced by the mechanical properties of PDMS, no matter in normal or osteogenic medium. From the evaluation of calcium deposition, the calcium percentage was higher on the stiffer PDMS, supporting the enhancement of late osteogenic differentiation due to the increase in substrates’ mechanical strength. Compared with the results from cultured osteoblasts, the mechanical strength of PDMS was not so efficient on the proliferation, but was still effective on late osteogenic differentiation. This was possibly because PDMS-DPSC interforce was lower than that between PDMS and osteoblasts, so it took a longer period for DPSC to respond to the biomaterials surface. Another possibility was that the osteogenic level of DPSC was lower than that of osteoblasts, leading to the limited effect of PDMS stiffness on DPSC.

    目錄 摘要 I Abstract III 致謝…………………………………………………………………… V 目錄 VIIII 圖目錄 X 表目錄 XVII 專有名詞及縮寫 XVIIII 第一章 緒論 1 第二章 文獻回顧 2 2.1 組織工程 2 2.2 幹細胞 5 2.2.1 間葉幹細胞 5 2.2.2 牙髓幹細胞(DPSCs) 9 2.3. 骨母細胞的分化 11 2.4 環境因子對細胞之行為 13 2.4.1細胞外基質的組成與特性 14 2.4.2 細胞外基質之訊息傳遞 15 2.4.3 細胞外基質的物理因子與細胞行為的影響 17 2.5聚二甲基矽氧烷(PDMS) 20 2.6 材料表面改質介紹 21 2.6.1 臭氧改質 24 2.7機械強度對組織工程的影響 26 2.7.1 機械強度在組織工程上的應用 28 2.7.2 機械強度與細胞分化關係 29 第三章 實驗材料與方法 31 3.1 實驗藥品 31 3.2 實驗儀器 33 3.3實驗步驟 34 3.3.1 PDMS基材之製備 34 3.3.2臭氧改質 35 3.3.3培養基材之清洗流程 35 3.3.4 PDMS基本材料性質分析 36 3.3.5 體外細胞實驗 37 第四章 實驗結果與討論 50 4.1聚二甲基矽氧烷材料性質分析 50 4.1.1機械強度測試 50 4.1.2材料表面親疏水性分析 53 4.2 PDMS 經表面改質後表面型態與元素分析 56 4.3 表面官能基結構分析 61 4.4表面改質效果的持續時間 63 4.5骨母細胞在改質後PDMS上的活性表現 65 4.6骨母細胞在UVO改質後PDMS上的分化表現 71 4.7骨母細胞於UVO改質後的PDMS上型態觀察 75 4.8骨母細胞的礦化分析 82 4.9牙髓幹細胞在改質後PDMS上的活性表現 85 4.10牙髓幹細胞在改質後PDMS上的分化表現 88 4.11牙髓幹細胞於UVO改質後的PDMS上型態觀察 91 4.12牙髓幹細胞的礦化分析 94 第五章 結論 97 參考文獻 99

    1. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR, Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, 2003. 21(4):157-161.
    2. Badylak SF, Taylor D, Uygun K, Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds. Annual Review of Biomedical Engineering, 2011. 13(1):27-53.
    3. Bowen DL, Lane HC, Fauci AS, Immunopathogenesis of the Acquired Immunodeficiency Syndrome. Annals of Internal Medicine, 1985. 103(5):704-709.
    4. Lanzendorf SE, Boyd CA, Wright DL, Muasher S, Oehninger S, Hodgen GD, Use of human gametes obtained from anonymous donors for the production of human embryonic stem cell lines. Fertil Steril, 2001. 76(1):132-137.
    5. Barrilleaux B, Phinney DG, Prockop DJ, O'Connor KC, Review: ex vivo engineering of living tissues with adult stem cells. Tissue Engineering, 2006. 12(11): 3007-3019.
    6. Hutmacher W, Scaffolds in tissue engineering bone and cartilage. Biomater, 2000. 21(24): 2529-2543.
    7. Agrawal CM, Ray RB, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Biomedical Materials Research, 2001. 55(2):141-150.
    8. Leong KF, Cheah CM, Chua CK, Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 2003. 24(13):2363-2378.
    9. Geiger B, Spatz JP, Bershadsky AD, Environmental sensing through focal adhesions. Cell Biology, 2009. 10(1):21-33.
    10. Yim EK, Pang SW, Leong KW, Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Experiment Cell Research, 2007. 313(9):1820-1829.
    11. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak NG, Kaplan DL, Cell differentiation by mechanical stress. Federation of American Societies for Experimental Biology , 2001. 16(2):270-272.
    12. Metallo CM, Vodyanik MA, De PJJ, Slukvin II, Palecek SP, The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnology and bioengineering, 2008. 100(4):830-837.
    13. Caplan AI, Bruder SP, Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in Molecular Medicine, 2001. 7(6):259-264.
    14. Bobis DJS, Majka M, Mesenchymal stem cells characteristics and clinical applications. Cytobiologica, 2006. 44(4):215-230.
    15. Chamberlain G, Fox J, Ashton B, Middleton J, Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 2007. 25(11):2739-2749.
    16. De SC, Meyer E, Van DWGR, Van SA, Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology, 2011. 75(8):1431-1443.
    17. Dominici MLBK, Mueller I, Slaper CI, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E, Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy, 2006. 8(4):315-317.
    18. Caplan AI, Mesenchymal stem cells. Orthopaedic Reserach, 1991. 9(5):641-650.
    19. Friedenstein AJ, Gorskaja JF, Kulagina NN, Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 1976. 4(5):267-274.
    20. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ, Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. Cell Science, 2003. 116(9): 1827-1835.
    21. Prockop DJ, Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997. 276(5309):71-74.
    22. Dominici M, Blanc K, Mueller I, Slaper CI, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E, Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy, 2006. 8(4):315-7.
    23. Schieker M, Pautke C, Haasters F, Schieker J, Docheva D, Bocker W, Guelkan H, Neth P, Jochum M, Mutschler W, Human mesenchymal stem cells at the single-cell level: simultaneous seven-colour immunofluorescence. Anatomy, 2007. 210(5):592-599.
    24. Docheva D, Popov C, Mutschler W, Schieker M, Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. Cellular and Molecular Medicine, 2007. 11(1):21-38.
    25. Kawashima N, Characterisation of dental pulp stem cells: a new horizon for tissue regeneration. Archives of Oral Biology, 2012. 57(11):1439-1458.
    26. Fau MGS, Fau BJMM, Fau RPGBJ, Fau SPSR, Shi S, Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Programs of the National Academy of Sciences, 2000. 97(25):13625-13630.
    27. Gronthos S, Brahim, J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S, Stem cell properties of human dental pulp stem cells. Dental Research, 2002. 81(8):531-535.
    28. Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De RA, Papaccio G, Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differentiation, 2007. 14(6):1162-1171.
    29. Laino G, Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G, A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue. Bone Mineralization Research, 2005. 20(8):1394-1402.
    30. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara GP, Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation, 2005. 80(6):836-842.
    31. Zhang WFXF, Shi S, Shi SFM, Fan MFJA, Jansen JA, Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Engineering, 2006. 12(10):2813-2823.
    32. Huang GT, Gronthos S, Shi S, Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Dental Research, 2009. 88(9):792-806.
    33. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S, SHED: stem cells from human exfoliated deciduous teeth. National Academy of Sciences, 2003. 100(10):5807-5812.
    34. Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M, Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. Endodontists, 2009. 35(11):1536-1542.
    35. Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y, Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biology of Cell, 2007. 99(8):465-74.
    36. Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA, Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Engineering, 2006. 12(10):2813-2823.
    37. Papaccio G, Graziano A, Aquino R, Graziano MF, Pirozzi G, Menditti D, Rosa AD, Carinci F, Laino G, Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. Cell Physiology, 2006. 208(2):319-325.
    38. Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, Li Y, Jin Y, Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Engineering, 2006. 12(11):3097-3105.
    39. Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, Wang S, Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. Cell Physiology, 2010. 223(2):415-422.
    40. Graziano A, Aquino R, Laino G, Papaccio G, Dental pulp stem cells: a promising tool for bone regeneration. Stem. Cell Review, 2008. 4(1):21-6.
    41. Liu DGF, Liu YY, An F, Zhang CAYF, Shi SZCF, Wang WSSF, Wang SWWF, Wang S, Suppression of T cell proliferation by root apical papilla stem cells in vitro. Cells Tissues Organs, 2010. 191(5):357-364.
    42. Huang AH, Snyder BR, Cheng PH, Chan AW, Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells, 2008. 26(10):2654-2663.
    43. Ikeda E, Yagi K, Kojima M, Yagyuu T, Ohshima A, Sobajima S, Tadokoro M, Katsube Y, Isoda K, Kondoh M, Kawase M, Go MJ, Adachi H, Yokota Y, Kirita T, Ohgushi H, Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation, 2008. 76(5):495-505.
    44. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S, Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Engineering, 2010. 16(2):605-615.
    45. Beck GR, Inorganic phosphate as a signaling molecule in osteoblast differentiation. Cellular Biochemistry, 2003. 90(2):234-243.
    46. Stein GS, Lian JB, Stein JL, Wijnen AJV, Montecino M, Transcriptional control of osteoblast growth and differentiation. Physiological reviews, 1996. 76(2):593-629.
    47. Ang ES, Yang X, Chen H, Liu Q, Zheng MH, Xu J, Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-κB and ERK activation. Federation of European Biochemical Societies, 2011. 585(17):2755-2762.
    48. Daley WP, Peters SB, Larsen M, Extracellular matrix dynamics in development and regenerative medicine. Cell Science, 2008. 121(3):255-264.
    49. Vinay K, Abbas AK, Nelson F, Robbins & Cotran Pathologic Basis of Disease.Student consult, 2005.
    50. Giancotti FG, A structural view of integrin activation and signaling. Developmental Cell, 2003. 4(2):149-151.
    51. Taipale J, Keski OJ, Growth factors in the extracellular matrix. Federation of American Societies of Experimental Biology, 1997. 11(1):51-59.
    52. Pompe TSK, Alberti K, Zandstra P, Werner C, Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nature Protocols, 2010. 5:1042-1050.
    53. Bakeine GJ, Ban J, Grenci G, Pozzato A, Zilio SD, Prasciolu M, Businaro L, Tormen M, Ruaro ME, Design, fabrication and evaluation of nanoscale surface topography as a tool in directing differentiation and organisation of embryonic stem-cell-derived neural precursors. Microelectron Engineering, 2009. 86(4-6):1435-1438.
    54. Engler AJ, Sen S, Sweeney HL, Discher DE, Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4):677-89.
    55. Kshitiz ME, Hubbi EH, Ahn J, Downey J, Afzal DH, Kim S, Rey C, Chang A, Kundu GL, Semenza RM, Abraham A, Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors. Science Signal, 2012. 5(227):41.
    56. Dela PNG, Walshe TE, Leach LL, Saint GM, Amore PA, Role of shear-stress-induced VEGF expression in endothelial cell survival. Cell Science, 2012. 125:831-43.
    57. Engler AJ, Sen S, Sweeney HL, Discher DE, Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4):677-689.
    58. Cox TR, Erler JT, Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Disease Models & Mechanisms, 2011. 4(2):165-178.
    59. Dennis E, Paul D, Yu LJW, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310:1139-1143.
    60. Smith KE, Hyzy SL, Sunwoo M, Gall KA, Schwartz Z, Boyan BD, The dependence of MG63 osteoblast responses to (meth)acrylate-based networks on chemical structure and stiffness. Biomaterials, 2010. 31(24):6131-6141.
    61. Keogh MB, O'Brien FJ, Daly JS, Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen-GAG scaffold. Acta Biomater, 2010. 6(11):4305-13.
    62. Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, Cohen SMA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WT, Extracellular-matrix tethering regulates stem-cell fate. Nature Materials, 2012. 11:642-649.
    63. Reilly GC, Engler AJ, Intrinsic extracellular matrix properties regulate stem cell differentiation. Biomechanics, 2010. 43(1):55-62.
    64. Keddie JL, Tabatabaian Z, Jeyens C, Parbhoo B , Influence of interfaces on the rates of crosslinking in poly(dimethyl siloxane) coatings. Polymer Science , 2004. 42:1421-1431.
    65. Fuard D, Tzvetkova CT, Decossas S, Tracqui P, Schiavone P, Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Engineering, 2008. 85(5-6):1289-1293.
    66. Whitesides GM, David C, Schueller JC, Olivier JA, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry, 1998. 70 (23):4974-4987.
    67. Hsien WM, Simple poly(dimethylsiloxane) surface modification to control cell adhesion. Surface and Interface Analysis, 2009. 41(1):11-16.
    68. Whitesides GM, Paul JA, Ismagilov, Rustem F, Microfabrication inside capillaries using multiphase laminar flow patterning. Science, 1999. 285(5424):83-85.
    69. Ionescu ZC, Shaw RM, Seo J, Jan YN, Jan LY, Lee LP, Mammalian electrophysiology on a microfluidic platform. National Academy of Sciences, 2005. 102(26):9112-7.
    70. Y TYAI, Fibroblast growth on polymer surfaces and biosynthesis of collagen. Biomedical Material Research, 1994. 28:783-789.
    71. Van WP, Hogt A, Beugeling T, Feijen J, Bantjes A, Detmers J, Van AW, Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials, 1987. 8(5):323-328.
    72. Garbassi F, Morra M, Occhiello E, Polymer surfaces: from physics to technology. Physical Chemistry, 1994
    73. Chan CM, Polymer surface modification and characterization, 1993: Carl Hanser, GmbH & Co.
    74. Nizam EHM, Taleb MFA, El NAWM, Metal sorption and swelling characters of acrylic acid and sodium alginate based hydrogels synthesized by gamma irradiation. Nuclear Instruments and Methods in Physics Research, 2008. 266(11):2607-2613.
    75. Hua S, Wang A, Synthesis characterization and swelling behaviors of sodium alginate-g-poly (acrylic acid)/sodium humate superabsorbent. Carbohydrate Polymers, 2009. 75(1):79-84.
    76. Kramer P, Yeh Y, Yasuda H, Low temperature plasma for the preparation of separation membranes. Membrane Science, 1989. 46(1):1-28.
    77. Wang Y, Kim JH, Choo KH, Lee YS, Lee CH, Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Membrane Science, 2000. 169(2):269-276.
    78. Tsai CC, Chang Y, Sung HW, Hsu JC, Chen CN, Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent (genipin): an in vitro study. Biomaterials, 2001. 22(6):523-533.
    79. Dasgupta S, Surface modification of polyolefins for hydrophilicity and bondability: Ozonization and grafting hydrophilic monomers on ozonized polyolefins. Applied Polymer Science, 1990. 41(1-2):233-248.
    80. Karlsson J, Gatenholm P, Solid-supported wettable hydrogels prepared by ozone induced grafting. Polymer, 1996. 37(19):4251-4256.
    81. Peeling J, Jazzar MS, Clark DT, An ESCA study of the surface ozonation of polystyrene film. Polymer Science, 1982. 20(7):1797-1805.
    82. Tu CY, Liu YL, Lee KR, Lai JY, Surface grafting polymerization and modification on poly (tetrafluoroethylene) films by means of ozone treatment. Polymer, 2005. 46(18):6976-6985.
    83. Yuan Y, Zhang JFA, Yuan J, Zhou J, Shen J, Lin S, Surface modification of SPEU films by ozone induced graft copolymerization to improve hemocompatibility. Colloids and Surfaces, 2003. 29(4):247-256.
    84. Park JC, Hwang YS, Lee JE, Park KD, Matsumura K, Hyon SH, Suh H, Type I atelocollagen grafting onto ozone‐treated polyurethane films: Cell attachment, proliferation, and collagen synthesis. Biomedical Materials Research, 2000. 52(4):669-677.
    85. 羅棠, 製備並分析具骨誘導性之臭氧改質聚乳酸多孔支架. 台灣科技大學, 2010.
    86. Chuchin AY, Free radical reactions of polyarylenealkylenes and their hydroperoxides. Review. Polymer Science, 1979. 21(7):1579-1618.
    87. Schellekens J, Buurman P, Kuyper TW, Abbott GD, Pombal XP, Cortizas AM, Influence of source vegetation and redox conditions on lignin-based decomposition proxies in graminoid-dominated ombrotrophic peat. Geoderma, 2015. 237–238:270-282
    88. Laas J, Kseibi S, Perthel M, Klingbeil A, El ALE, Alken A, Impact of high intensity transient signals on the choice of mechanical aortic valve substitutes. Cardiothoracic Surgery, 2003. 23(1): 93-96.
    89. Milo S, Rambod E, Gutfinger C, Gharib M, Mitral mechanical heart valves: in vitro studies of their closure, vortex and microbubble formation with possible medical implications. Cardiothoracic Surgery, 2003. 24(3):364-370.
    90. Ito M, Nishida A, Koga A, Ikeda S, Shiraishi A, Uetani M, Hayashi K, Nakamura T, Contribution of trabecular and cortical components to the mechanical properties of bone and their regulating parameters. Bone, 2002. 31(3):351-358.
    91. Kopp MS, Leclère P, Dubourg F, Lazzaroni R, Aimé JP, Quantitative Measurement of the Mechanical Contribution to Tapping-Mode Atomic Force Microscopy Images of Soft Materials. Langmuir, 2000. 16(22):8432-8437.
    92. Cortes D, Lake S, Kadlowec J, Soslowsky L, Elliott D, Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomechanics and Modeling in Mechanobiology, 2010. 9(5):651-658.
    93. Kuo CK, Ma PX, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001. 22(6):511-521.
    94. Donnelly E, Chen D, Boskey A, Baker S, van der Meulen MH, Contribution of Mineral to Bone Structural Behavior and Tissue Mechanical Properties. Calcified Tissue International, 2010. 87(5):450-460.
    95. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W, β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin. Cell, 2001. 105(4):533-545.
    96. Wang FW, Hao HB, Zhao SD, Zhang YM, Liu Q, Liu HJ, Liu SM, Yuan QH, Bing LJ, Ling EA, Hao AJ, Roles of activated astrocyte in neural stem cell proliferation and differentiation. Stem Cell Research, 2011. 7(1):41-53.
    97. Lu Q, Pandya M, Rufaihah AJ, Rosa V, Tong HJ, Seliktar D, Toh WS, Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System. Stem Cells International, 2015. 2015:9.
    98. Tammaro L, Vittoria V, Calarco A, Petillo O, Riccitiello F, Peluso G, Effect of layered double hydroxide intercalated with fluoride ions on the physical, biological and release properties of a dental composite resin. Dentistry, 2014. 42(1):60-67.
    99. Lim JY, Shaughnessy MC, Zhou Z, Noh H, Vogler EA, Donahue HJ, Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials, 2008. 29(12):1776-1784.
    100. Chen XB, Nisbet DR, Li RW, Smith PN, Abbott TB, Easton MA, Zhang DH, Birbilis N, Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating. Acta Biomaterialia, 2014. 10(3):1463-1474.
    101. Hutchinson JW, Neale KW, Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metallurgica, 1977. 25(8):839-846.
    102. Khanafer K, Duprey A, Schlicht M, Berguer R, Effects of strain rate, mixing ratio, and stress–strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications. Biomedical Microdevices, 2009. 11(2):503-508.
    103. Cox TR, Erler JT, Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Disease Models & Mechanisms, 2011. 4(2):165-178.
    104. Graubner VM, Jordan R, Nuyken O, Schnyder B, Lippert T, Kötz R, Wokaun A, Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm. Macromolecules, 2004. 37(16):5936-5943.
    105. Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT, Conversion of Some Siloxane Polymers to Silicon Oxide by UV/Ozone Photochemical Processes. Chemistry of Materials, 2000. 12(6):1591-1596.
    106. Robin J, Overview of the Use of Ozone in the Synthesis of New Polymers and the Modification of Polymers. New Synthetic Methods, 2004:35-80.
    107. Fuard D, Tzvetkova CT, Decossas S, Tracqui P, Schiavone P, Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectronic Engineering, 2008. 85(5-6): 1289-1293.
    108. Mehta G, Kiel MJ, Lee JW, Kotov N, Linderman JJ, Takayama S, Polyelectrolyte-Clay-Protein Layer Films on Microfluidic PDMS Bioreactor Surfaces for Primary Murine Bone Marrow Culture. Advanced Functional Materials, 2007. 17(15):2701-2709.
    109. De SMN, Desai R, Odde DJ, Micro-patterning of animal cells on PDMS substrates in the presence of serum without use of adhesion inhibitors. Biomedical Microdevices, 2004. 6(3):219-222.
    110. Oláh A, Hillborg H, Vancso GJ, Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Applied Surface Science, 2005. 239(3–4): 410-423.
    111. Kuznetsova A, Yates JT, Zhou G, Yang JC, Chen X, Making a Superior Oxide Corrosion Passivation Layer on Aluminum Using Ozone. Langmuir, 2001. 17(7):2146-2152.
    112. Anselme K, Linez P, Bigerelle M, Le MD, Le MA, Hardouin P, Hildebrand HF, Iost A, Leroy JM, The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials, 2000. 21(15):1567-1577.
    113. Özçam AE, Efimenko K, Genzer J, Effect of ultraviolet/ozone treatment on the surface and bulk properties of poly(dimethyl siloxane) and poly(vinylmethyl siloxane) networks. Polymer, 2014. 55(14):3107-3119.
    114. Prauzner BS, Raczkowska J, Madej E, Pabijan J, Lukes J, Sepitka J, Rysz J, Awsiuk K, Bernasik A, Budkowski A, Lekka M, PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. Mechanical Behavior of Biomedical Materials, 2015. 41(0):13-22.
    115. Degand S, Knoops B, Dupont GCC, Design and characterization of surfaces presenting mechanical nanoheterogeneities for a better control of cell–material interactions. Colloids and Surfaces, 2014. 442(0):164-172.
    116. Sun J, Xiao WQ, Tang YJ, Li KF, Fan HS, Biomimetic interpenetrating polymer network hydrogels based on methacrylated alginate and collagen for 3D pre-osteoblast spreading and osteogenic differentiation. Soft Matter, 2012. 8(8):2398-2404.
    117. Weyts FA, Bosmans B, Niesing B, van LJP, Weinans H, Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcified Tissue International, 2003. 72(4):505-12.
    118. Wu MH, Simple poly(dimethylsiloxane) surface modification to control cell adhesion. Surface and Interface Analysis, 2009. 41(1):11-16.
    119. Muthukumaran P, Lim CT, Lee T, Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes. Biochemical and Biophysical Research Communications, 2012. 423(3):503-508.
    120. Engler AJ, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE, Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. Cell Biology, 2004. 166(6):877-887.
    121. Stein GS, Lian JB, Wijnen AJV, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM, Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 2004. 23(24):4315-4329.
    122. Wipff PJ, Majd H, Acharya C, Buscemi L, Meister JJ, Hinz B, The covalent attachment of adhesion molecules to silicone membranes for cell stretching applications. Biomaterials, 2009. 30(9):1781-1789.
    123. Rhee SH, Hwang MH, Si HJ, Choi JY, Biological activities of osteoblasts on poly(methyl methacrylate)/silica hybrid containing calcium salt. Biomaterials, 2003. 24(6):901-906.
    124. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS, Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 2004. 6(4):483-95.
    125. Lecanda F, Towler DA, Ziambaras K, Cheng SL, Koval M, Steinberg TH, Civitelli R, Gap Junctional Communication Modulates Gene Expression in Osteoblastic Cells. Molecular Biology of the Cell, 1998. 9(8):2249-2258.
    126. Bialorucki C, Subramanian G, Elsaadany M, Yildirim AE, In situ osteoblast mineralization mediates post-injection mechanical properties of osteoconductive material. Mechanical Behavior of Biomedical Materials, 2014. 38(0):143-153.
    127. Wang SM, Lee CH, Lin CH, Chen GS, Liu JC, Li CH, The Growth of Dental Pulp Stem Cells in Portland Cement Micro-Environment. Medical Sciences, 2015. 35(2):62-67.
    128. Navabazam AR, Nodoshan FS, Sheikhha MH, Miresmaeili SM, Soleimani M, Fesahat F, Characterization of mesenchymal stem cells from human dental pulp, preapical follicle and periodontal ligament. Reproductive Medicine, 2013. 11(3):235-242.
    129. Qu T, Jing J, Ren Y, Ma C, Feng JQ, Yu Q, Liu X, Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix. Acta Biomaterialia, 2015. 16(0):60-70.
    130. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis A, Koidis P, Geurtsen W, Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Archives of Oral Biology, 2011. 56(7):709-721.
    131. Neuss S, Apel C, Buttler P, Denecke B, Dhanasingh A, Ding X, Grafahrend D, Groger A, Hemmrich K, Herr A, Jahnen DW, Mastitskaya S, Perez BA, Rosewick S, Salber J, Wöltje M, Zenke M, Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials, 2008. 29(3):302-313.

    無法下載圖示 全文公開日期 2020/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE