簡易檢索 / 詳目顯示

研究生: 洪嘉彬
Chia-Bin Hung
論文名稱: 探討類骨母細胞於不同機械強度和親疏水性表面之生長行為
The Phenotypes of Osteoblastic Cells on Surfaces with Different Mechanical Properties and Hydrophilicity
指導教授: 何明樺
Ming-Hua Ho
口試委員: 李振綱
Cheng-Kang Lee
糜福龍
Fwu-Long Mi
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 224
中文關鍵詞: 類骨母細胞機械強度親疏水特性聚二甲基矽氧烷
外文關鍵詞: osteoblastic cell, mechanical strength, hydrophilicity, PDMS
相關次數: 點閱:285下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主要在探討機械性質與表面親疏水特性對類骨細胞(UMR-106)生理行為表現之影響,本實驗系統中以聚二甲基矽氧烷(PDMS, SYLGARD 184TM)為培養基材原料,藉著調控寡聚物與硬化劑之間的重量比例,製備出不同機械強度的基材,並在特定的參數控制下以氬氣(Argon)低溫電漿改質的方式,將原為疏水性的基材表面改質成適合細胞貼附生長的親水性基材表面,並進行一系列的材料強度、表面特性與細胞生理行為分析和觀察,其中以拉伸測試作材料強度分析,而表面特性有靜態表面接觸角和傅立葉轉換-遠紅外線分析,細胞行為反應分析則包含了在有無血清培養環境中的細胞貼附率(Cell attachment)、細胞增殖(Cell proliferation)、細胞移動速度(Cell migration)、細胞延展(Cell spreading)、細胞延伸率(cell elongation)、細胞鹼性磷酸酶表現(Cell Alkaline Phosphatase )和細胞的鈣化行為(Cell mineralization)。

    在本實驗系統中成功地藉由控制寡聚物與硬化劑的重量比例從10:1.2至10:0.3,所得之彈性模數從最硬約2200KPa至最軟約80KPa,且經由分析證實,機械強度的差異並未對材料的表面親疏水特性和化學結構造成大幅度的改變。除此之外,本實驗所控制的氬氣電漿處理參數亦可成功地明顯改變材料表面的潤濕特性(接觸角度從約102o變成約45o),且未造成表面的化學結構和機械強度明顯的改變。

    在細胞生理反應的實驗觀察中,在含有血清的培養條件下,在電漿改質過的親水性表面材料上有較佳的細胞貼附表現,機械強度的影響也較為明顯,因為此表面有較佳的親和性,骨細胞能在短時間內進行貼附,進而清楚的辨識機械強度,並引導細胞的生理行為。比較不同機械強度的材料,硬材料能有較佳的誘導效果,因此能有效刺激骨細胞內的化學訊號傳遞鏈,然而在未改質過的疏水性表面的細胞貼附行為中,因為表面缺乏親和性,因此機械強度並無任何明顯的效應。

    然而在細胞的增生表現中,不管是親水性或疏水性表面,硬材料皆不利於細胞的增生行為,因此可認為不同生長階段的細胞貼附與增生對機械強度有不同的效應和需求,也就是說硬材料能促進細胞的初期貼附,但卻可能不利於細胞的後期增生行為,除此之外,細胞行為中的延展面積、鹼性磷酸酶(ALP)和礦化表現行為,亦以硬材料有較佳的誘導細胞內訊號的傳遞,因此有較佳的表現。而其中細胞的移動行為則以在親和性較弱的的疏水性表面有較快的滑動速度,且硬材料上則能有效促進形成偽足而有明顯具目標性的移動。

    然而在不含血清的培養系統中,因為失去周圍蛋白質的影響,細胞表現出明顯的軸向拉伸行為外,其中細胞的初期貼附、面積延展亦皆以在親合性較佳的硬材料上有較佳的辨識和誘導,然而細胞的移動行為卻因蛋白質效應的消失而失去對細胞的引導,而降低了骨細胞在任何材料上的移動速度。

    本論文的目標在於期望能夠獲得有關於機械效應誘導細胞行為的訊息,並能在生醫材料的設計上和控制細胞反應的行為中能有所貢獻,因此由本研究中指出,材料的機械特性和表面親疏水性質對刺激骨細胞的生理行為,如貼附、增生和分化,確實有明顯的效應存在,並以接觸角約45o親水性表面且強度約2200kPa的硬材料能有效刺激骨細胞分化的生理表現,且根據本研究,不同的細胞生長時期和環境會對不同的機械強度產生反應,因此在未來有關骨再生的生醫產業對於特性設計和材料的選擇上,本研究將會是值得參考一大重點,以期能有效控制骨細胞的生理反應。


    The main purpose of this work is the investigation of osteoblastic cells’ (UMR-106) phenotypes on surfaces with different mechanical properties. The PDMS (polydimethyl siloxane) substrates with different elastic moduli by controlling the ratio of oligomer to crosslinker were prepared and applied for the culture of osteoblastic cells. Meanwhile, the hydrophilicity of substrates was also adjusted by using the argon plasma treatment. The elastic modulus was determined from the tensile test, and the surface characteristics were evaluated by contact angle measurement and FTIR analysis. Finally, the behaviors of osteoblastic cells were analyzed, including attachment, proliferation, migration, spreading, elongation, alkaline phosphatase (ALPase) expression and mineralization performance.

    By controlling the percentage of crosslinkers, we can successfully adjust the elastic modulus of PDMS substrates from 2200KPa to 80KPa. However, the wettability and surface functional groups were not obviously changed with the mechanical strength. On the other hand, the plasma treatment would decrease the contact angle of PDMS substrates (from 102o to 45o); meanwhile, it did not result in significant difference in the mechanical strength and the chemical composition of substrates.

    With the presence of serum, the cell attachment on the hydrophilic and hard PDMS substrate would be the best and the influence of mechanical strength would very significant. Because of the good affinity between cells and this hydrophilic surface, the osteoblastic cells can attach onto the substrate in a short time and recognize the mechanical strength. Thus, the mechanical strength would affect the cell behavior immediatedly. For the comparison of different mechanical strength, the UMR-106 would prefer to attach to the hard substrate which may stimulate the signal chain inside the cells. For the cell attachment on the hydrophobic pristine substrate, there would be no differences caused by the variations of mechanical strength. It was because that the cells can not recognize the surface properties immediately due to the low cell-surface affinity.

    However, long-term proliferation was not good on the hardest surfaces., no matter on hydrophilic or hydrophobic surfaces. It suggested that the requirements of mechanical strength would be different for different stages, cell attachment and proliferation. In the initial stage of cell attachment, hard surface would be beneficial to support cells. On the contrary, the surface which was too stiff would not be suitable for cell proliferation. The cell spreading, expression of alkaline phosphatase (ALPase) and mineralization would be all better on the hardest PDMS, which was probably due to the activation in cellular signaling. The cell mobility would be higher on the hydrophobic substrate with poor cell affinity, especial on the hard substrate. Hard surface would promote formation of lamellopodia, which was necessary for cell migration.

    In the the system without serum, the cells would be elongated along a single axis. Besides, the cell mobility and spreading would be decreased, compared with the system added with serum. The effect of mechanical strength would be briefly the same with those in the system with serum addition; that was, the hard surface would be beneficial to the cell attachment, mobility and spreading.

    The aim of this thesis is to obtain useful information of mechanical strength for the design of medical devices and the control of cell responses. Thus, the present research revealed that substrate elasticity and surface hydrophilicity can significantly affect the attachment, proliferation and differentiation of osteoblast-like cells. According to the stages of cells and surroundings, the different mechanical strength could be selected according to this research.

    摘要 I Abstract IV 誌謝 VIII 目錄 IX 圖目錄 XIV 表目錄 XVII 中英文對照表 XVIII 第一章 序論 - 1 - 第二章 文獻回顧 - 4 - 2.1 組織工程 - 4 - 2.1.1骨骼 - 8 - 2.1.2骨重塑作用(bone remodeling) - 9 - 2.1.3 促進骨生長之訊號因子 - 12 - 2.1.4 骨母細胞之生化行為表現 - 18 - 2.2細胞與胞外基質 - 21 - 2.2.1 胞外基質之組成與特性 - 21 - 2.2.2 細胞與胞外基質間的交互作用 - 24 - 2.3 物化環境因子所引導之細胞表現形態 - 27 - 2.3.1 評估基材種類的機械特性對細胞行為之影響 - 28 - 2.3.2 聚二甲基矽氧烷 (Polydimethylsiloxane, PDMS) - 35 - 2.3.3 細胞對材料軟硬性質之生化行為反應 - 38 - 2.3.4 細胞接收機械刺激訊號之傳遞機制 - 55 - 2.4 材料表面改質 - 59 - 2.4.1電漿表面改質 - 59 - 2.5大鼠骨肉瘤細胞 (UMR-106 cells) - 62 - 第三章 實驗材料與方法 - 64 - 3.1 實驗藥品 - 64 - 3.2 實驗儀器 - 66 - 3.3 實驗方法 - 68 - 3.3.1 培養基材 - 68 - 3.3.1.1 PDMS培養基材之製備 - 68 - 3.3.1.2 培養基材之清洗流程 - 69 - 3.3.2 表面改質 - 69 - 3.3.2.1氬氣電漿表面改質 - 69 - 3.3.3 PDMS培養基材特性之分析 - 70 - 3.3.3.1 機械拉伸強度測試 - 70 - 3.3.3.2 傅利葉轉換紅外線光譜之結構分析 - 71 - 3.3.3.3 基材表面靜態接觸角之量測 - 72 - 3.3.4 細胞培養 - 73 - 3.3.4.1 細胞來源、繼代培養、冷凍保存與解凍培養 - 73 - 3.3.4.2 細胞培養於基材之方式 - 76 - 3.3.5 電顯觀察前之細胞樣本處理方式 - 78 - 3.3.6 細胞貼附與細胞增生實驗 - 80 - 3.3.7 細胞型態之觀察和量測 - 81 - 3.3.8 細胞蛋白質濃度測試實驗 - 83 - 3.3.9 鹼性磷酸酶(ALP-ase)定性染色 - 85 - 3.3.10 鹼性磷酸酶(ALP-ase)定量分析 - 86 - 3.3.11 細胞鈣化實驗 - 88 - 3.3.12 細胞遷移實驗 - 91 - 第四章 結果與討論 - 92 - 4.1不同機械強度與親疏水表面特性之聚二甲基矽氧烷基材之特性分析 - 92 - 4.1.1 基材機械強度測試 - 92 - 4.1.2 基材表面親疏水性分析 - 96 - 4.1.3 表面官能基結構分析 - 98 - 4.2 不同機械強度與親疏水表面特性之材料對骨細胞生長行為的影響 - 102 - 4.2.1 細胞貼附行為 - 102 - 4.2.2 細胞增生行為 - 108 - 4.2.3 細胞型態觀察 - 113 - 4.2.4 細胞面積量測 - 118 - 4.2.5 細胞延伸度 - 124 - 4.2.6 細胞遷移速度 - 129 - 4.3不同機械強度與親疏水表面特性之材料對骨誘導化學訊號之表現 - 136 - 4.3.1 鹼性磷酸酶(ALP-ase)之定性染色 - 136 - 4.3.2 鹼性磷酸酶(ALP-ase)之定量分析 - 145 - 4.3.2 細胞鈣化實驗(Von Kossa stain) - 150 - 第五章 結論 - 154 - 參考文獻 - 160 - 附錄 - 190 - 附錄A、ALPase 檢量線 - 190 - 附錄B、量測細胞數檢量線 - 192 - 附錄C、Image-J量測細胞面積 - 193 - 附錄D、Image-J量測細胞延伸率 - 196 - 附錄E、Image-J量測細胞移動座標 - 198 -

    Ai H., Lvov Y.M., Mills D.K., Jennings M., Alexander J.S., Jones S.A.,
    Coating and selective deposition of nanofilm on silicone rubber for cell
    adhesion and growth, Cell Biochem. Biophys. 2003; 38: 103-114.

    Agrawal C.M., Ray R.B., Biodegradable polymeric scaffolds for musculoskeletal tissue engineering , J. Biomed. Mater. Res., 2001; 55 : 141.

    Abe H., Hayashi K., Sato M.(Eds.), Data Book on Mechanical Properties of
    Living Cells, Tissues, and Organs, Springer-Verlag, Tokyo, 1996.

    Anderson J.M., Inflammatory Response to Implants, ASAIO Journal , 1988;
    34:101-107

    Anselme K., Osteoblast adhesion on biomaterials, Biomaterials, 2000; 21:
    667-681

    Alberts X.X., Molecular biology of the cells, 2002, 4th ed, Garland Publishing

    Atance J., Yost M.J., and Carver W., Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch, J. Cell. Physiol., 2004; 200: 377–386

    Benguigui L., Polyacrylic Gels., Journal de Physique II, 1995; 5: 437

    Balgude A.P., Yu X., Szymanski A., Bellamkonda R.V., Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures., Biomaterials , 2001;22:1077–84.

    Bershadsky A.D., Balaban N.Q., Geiger B., Adhesion-dependent cell
    mechanosensitivity. Annu. Rev. Cell Dev. Biol. , 2003; 19 : 677–95.

    Bodas D., Khan-Malek C., Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments, Microelectron. Eng., 2006; 83: 1277-1279.

    Boss J.H., Biocompatibility: Review of the Concept and Its Relevance to Clinical Practice. Biomaterials and Bioengineering Handbook, edited by Wise DL et al., 2000.
    Bin Li., Chen J.X, James Wang H.C., RGD peptide-conjugated poly (dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts, J. Biomed. Mater. Res., 2006; 79A: 989–998.

    Burton K., Taylor D.L., Traction forces of cytokinesis measured with optically modified elastic substrata, Nature , 1997, 385 : 450-454

    Banes A.J., Tsuzaki M., Yamamoto J., et al. Mechanoreception at the cellular level: the detection, interpretation, and diversity responses to mechanical signals, Biochem. Cell Biol. , 1995; 73 : 349–365 .

    Boudreau N., Myers C., Bissell M.J., From laminin to lamin: regulation of tissue-specific gene expression by the ECM, Trends in Cell Biology, 1995; 5: 1- 4

    Babensee J.E., McIntire L.V., Mikos A.G., Growth factor delivery for tissue engineering, Pharm. Res., 2000 ; 17: 497-504.

    Bernstein L.R., Liotta L.A., Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Curr. Opin. Oncol. 1994 ; 6 : 106 –113.

    Cobine J.D., Gaseous Conductors, Dover, New York (1958).

    Clark E.S. , Muus L.T., Paper presented at 133nd Meeting of the American Chemical Society”, Sept 1957, New York

    Choquet D., Felsenfeld D.P., Sheetz M.P., Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell., 1997; 88:39–48.

    Curtis A., Riehle M., Tissue engineering: the biophysical background. Phys Med. Biol. , 2001 ; 46 : R47–65.

    Clark E.A., Brugge J.S., Integrins and signal transduction pathways: The road taken.Science, 1995; 268 : 233–239.

    Chicurel M.E., Chen C.S., Ingber D.E. Cellular control lies in the balance of forces., Curr. Opin. Cell. Biol. , 1998 ; 10 : 232–9.

    Cunningham J.J., Nikolovski J., Linderman J.J., Mooney D.J., Biotechniques, 2002; 32 : 876

    Charlesby A., Atomic Radiation and Polymers, Pergamon Press, New York, 1960, p.412

    Carmona R.H., Bone Health and Osteoporosis: A Report of the Surgeon General, U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES,
    http://www.surgeongeneral.gov/library

    Clark RAF., Lanigan J.M., Dellapelle P., Manseau E., Dvorak H.F., Colvin R.B., Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithalialization, J. Invest. Derma., 1982; 79: 264-269.

    Doban R.C., Paper presented at 130th Meeting of the American Chemical Society, 1965, Sept, New. Jersey.

    Deroanne C.F., Lapiere C.M., Nusgens B.V., In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton , Cardiovasc. Res., 2001; 49: 647.

    Draget K.I., Skjak-Braek G., Smidsrod O., Alginate based new materials, Int. J. Biol. Macromol. , 1997; 21: 47.

    DeLong S.A., Gobin A.S., West H.L., Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration, J.Controlled Release, 2005; 109: 139–148.

    Davis D.H., Giannoulis C.S., Johnson R.W., Desai T.A., Immobilization of RGD to <111> silicon surfaces for enhanced cell adhesion and proliferation, Biomaterials, 2002; 23: 4019-4027

    Ducy P., Cbfa1: A molecular switch in osteoblast biology. Dev. Dyn., 2000, 219:461–471.

    Efimenko K., Wallace W.E., Genzer J., Surface modification of sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment, J. Colloid Interface Sci., 2002; 254: 306–315.

    Engler A., Richert L., Wong J., Picart C., Discher D., Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations between substrate stiffness and cell adhesion., Surf. Sci., 2004 ; 570:142-154.

    Flanagan L.A., Ju Y.E., Marg B., Osterfield M., Janmey P.A., Neurite branching on deformable substrates, Neuroreport, 2002; 13: 2411.

    Fettes E.M., Chemical Reactions of Polymers, Interscience Pub., New York, 1964, p.564.

    Fu P.F., Glover S., King R.K.; Lee C.I., Pretzer M.R., Tomalia M.K., Polypropylene-polysiloxane block copolymers via hydrosilylation of monovinylidene capped isotactic polypropylene, ACS Polym. Prepr, 2003, 44: 1014-1015.

    Franceschi R.T., Xiao G., Regulation of the osteoblast-specific transcription factor,Runx2: Responsiveness to multiple signal transduction pathways. J Cell Biochem., 2003; 88:446–454.

    Franceschi R.T., Xiao G., Jiang D., Gopalakrishnan R., Yang S., Reith E., Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res., 2003; 44:109–116.

    Griffith L.G., Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann. N.Y. Acad. Sci., 2002 ; 961 : 83–95.

    Gaudet C., Marganski W.A., Kim S., Brown C.T., Gunderia V., Dembo M., Wong J.Y., Influence of Type I Collagen Surface Density on Fibroblast Spreading, Motility, and Contractility, Biophys. J., 2003; 85: 3329-3335.

    Garrett I.R., Gutierrez G.E., Rossini G., Nyman J., McCluskey B., Flores A. and Mundy G.R., Locally delivered nanoparticles enhance fracture healing in rats, J. Orthopaedic Res., 2007; 25: 1351-1357

    Genzer J., Efimenko K., Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers , Science, 2000; 290: 2130.

    Genes N.G., Rowley J.A., Mooney D.J., Bonassar L.J., Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces., Arch. Biochem. Biophys., 2004 ; 422 : 161-167.

    Garc&iacute;a A.J., Vega M.D., and Boettiger D., Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation, Mol. Cell. Biol., 1999; 10: 785-798

    Grinnel F., Billingham R.E., Burgess L., Distribution of fibronectin during wound healing in vivo, J. Invest. Derma., 1981; 76: 181-189.

    Grinnel F., Wound repair, keratinocyte activation and integrin modulation, J. Cell Sci., 1992 ; 101: 1-5.

    Goncalves R.F., Wolinetz C.D., Killian G.J., Influence of arginine-glycine-aspartic acid (RGD), integrins (aV and a5) and osteopontin on bovine sperm–egg binding, and fertilization in vitro, Theriogenology, 2007; 67: 468–474.

    Gray D.S., Tien J., Chen C.S., Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus, J. Biomed. Mater. Res., 2003; 66A: 605.

    Grayson ACR., Shawgo R.S., Johnson A.M., Flynn N.T., Li Y.W., Cima M.J., Langer R., A BioMEMS review: MEMS technology for physiologically integrated devices, Proc. IEEE, 2004; 1: 6-21.

    Guo W.H., Frey M.T., Burnham N.A., Wang Y.L., Substrate rigidity regulates the formation and maintenance of tissues, Biophys. J. ,2006 ; 90 : 2213-2220.

    Hutmacher D.W., Scaffolds in tissue engineering bone and cartilage, Biomaterials, 2000 ; 21 : 2259.

    Hammouch S.O., Beinert G.J., Herz J.E., Contribution to a better knowledge of the crosslinking reaction of polydimethylsiloxane (PDMS) by end-linking: the formation of star-branched PDMS by the hydrosilylation reaction, Polymer , 1996; 37: 3353-3360.

    Hay E.D., Interaction between the cell surface and extracellular matrix in corneal development: Cell and Tissue Interactions, Ed. J.W. Lash and M.M. Burger, New York: Raven Press, 1977, 115-137

    Hersel U., Dahmen C., Kessler H., RGD modified polymers: biomaterials for stimulated cell adhesion and beyond, Biomaterials , 2003 ; 24: 4385-4415.

    Helfrich M.H., Nesbitt S.A., Dorey E.L., Horton M.A., Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a beta 3 integrin, J. Bone Miner. Res., 1992 ; 7: 335- 343.

    Ho M.H., Kuo P.Y., Hsieh H.J., Hsien T.Y., Hou L.T., Lai J.Y., Wang D.M., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods, Biomaterials, 2004 ; 25: 129-138.

    Ho M.H., Wang D.M., Hsieh H.J., Liu H.C., Hsien T.Y., Lai J.Y., Hou L.T., Preparation and characterization of RGD-immobilized chitosan scaffolds, Biomaterials, 2005; 26: 3197-3206.

    Hermanson G.T., Bioconjugate Techniques, Academic Press, Inc., San Diego, CA, 1996.

    Howe A., Aplin A.E., Alahari S.K., Juliano R.L., Integrin signaling and cell growth control, Curr. Opin. Cell Biol., 1998; 10 : 220–231.

    Higuchi C., Myoui A., Hashimoto N., Kuriyama K., Yoshioka K., Yoshikawa H., Itoh K.,Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J. Bone Miner. Res., 2002 ; 17 : 1785–1794.

    Harrigan T.P., Hamilton J.J., Bone strain sensation via transmembrane
    potential changes in surface osteoblasts: loading rate and microstructural
    implications., J. Biomech., 1993; 26 : 183–200.

    Halliday N.L., Tomasek J.J., Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro., Exp. Cell Res., 1995 ; 217:109 –117.

    Inagaki N., Plasma surface modification and plasma polymerization, 1996, Technomic Publishing: Lancaster.

    Ingber D.E., Tensegrity I: cell structure and hierarchical systems biology. J. Cell Sci., 2003 ; 116 : 1157–73.

    Ingber D.E., Tensegrity II: how structural networks influence cellular information processing networks. , J Cell Sci., 2003 ; 116 : 1397–408.

    Ingber D.E., Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis, J. Cell. Biochem. , 1991 ; 47: 236-241.

    Ito Y., Kajihara M., Imanishi Y., Materials for enhancing cell adhesion by immobilization of cell-adhesive peptide, J. Biomed. Mater. Res., 1991; 25: 1325-1337.

    Jeffree G.M., Price CHG. , Bone tumours and their enzymes. J. Bone
    Jt. Surg., 1965; 47: 120-136.

    Jiang X.Y., Takayama S., Qian X.P., Ostuni E., Wu H.K., Bowden N., LeDuc P., Ingber D.E., Whitesides G.M., Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly (dimethylsiloxane), Langmuir, 2002; 18: 3273-3280.

    Jaiswal R.K., Jaiswal N., Bruder S.P., Mbalaviele G., Marshak D.R., Pittenger M.F., Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol.Chem. , 2000; 275: 9645–9652.

    Jadlowiec J., Koch H., Zhang X., Campbell P.G., Seyedain M., Sfeir C. , Phosphophoryn regulates the gene expression and differentiation of NIH3T3, MC3T3-E1, and human mesenchymal stem cells via the integrin/MAPK signaling pathway. J. Biol. Chem., 2004 ; 279 : 53323–53330.

    Juliano R.L., Haskill S., Signal transduction from the extracellular matrix. J. Cell Biol., 1993; 120 : 577–585.

    Kneser U., Schaefer D.J., Munder B., Klemt C., Andree C., Stark G.B., Tissue engineering of bone, minimally invasive therapy & allied technologies, 2002; 11: 107-116.

    Kofron M.D., Laurencin C.T., Bone tissue engineering by gene delivery, Adv. Drug Delivery Rev., 2006; 58: 555-576.

    Klenker B.J., Griffith M., Becerril C., West-Mays J.A., Sheardown H., EGF-grafted PDMS surfaces in artificial cornea applications, Biomaterials, 2005; 26: 7286–7296.

    Komori T., Kishimoto T., Cbfa1 in bone development , Curr. Opin. Genetics Dev., 1998;8 : 494 – 499.

    Kinsella M.G., Irvin C., Reidy M.A., Wight T.N., Removal of heparin sulfate by heparinase treatment inhibits FGF-2-dependent smooth muscle cell proliferation in injured rat carotid arteries, Atherosclerosis, 2004; 175: 51-57.

    Kim K., Fisher J.P., Nanoparticle technology in bone tissue engineering, J. Drug Targeting, 2007; 15: 241-252.

    Karakecili A., Satriano C., Gumusderelioglu M., Marletta G., Relationship between the fibroblastic behaviour and surface properties of RGD-immobilized PCL membranes, J. Mater. Sci.-Mater. Med., 2007; 18: 317-319 .

    Klees R.F., Salasznyk R.M., Kingsley K., Williams W.A., Boskey A., Plopper GE., Laminin-5induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Mol. Biol. Cell , 2005; 16 : 881–890.

    Kapur S., Baylink D.J., Lau K.H., Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. , Bone, 2003; 32:241–251.

    Khatiwala C.B., Peyton S.R., Putnam A.J., Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. , 2006 ; 290:C1640–1650.

    Leong K.F., Cheah C.M., Chua C.K., Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs, Biomaterials, 2003 ; 24 : 3262.
    Liu W.F., Chen C.S., Engineering biomaterials to control cell function. Mater. Today , 2005 ; 8 : 28–35.

    Lee J.N., Jiang X.Y., Ryan D., Whitesides G.M., Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane), Langmuir, 2004; 20: 11684-11691.

    Livesey S.A., Kemp B.E., Re C.A., Partridge N. C., Martin T.J. Selective hormonal activation of cyclic AMP-dependent protein kinase isoenzymes in normal and malignant osteoblasts. J. Biol. Chem., 1982; 257: 14983-14987.

    Lucas-Clerc C., Massart C., Campion J.P., Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects, Mol. cell endocrinol, 1993; 94: 9-20.

    Lu L., Yaszemski M.J., Mikos A.G., TGF-1 from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function, J. Bone & surgery, 2001; 83: 82-91.

    Lo C.M., Wang H.B., Dembo M., Wang Y.L., Substrate flexibility regulates growth and apoptosis of normal but not transformed cells, Biophys. J. , 2000; 79: 144.

    Lanyon L.E., Goodship A.E., Pye C.J., MacFie J.H., Mechanically adaptive bone remodelling. J. Biomech., 1982; 15: 141–154.

    Lauffenburger D.A., Linderman J.J., Receptors: models for binding, trafficking, and signaling., New York, Oxford University Press, 1993.

    Matsuzaka K., et al., The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro. Biomaterials, 1999; 20: 1293-1301.

    Menko A.S., and Boettiger D., Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation, Cell, 1987; 51: 51-57.

    McDonald J.C. et al, Fabrication of microfluidic systems in poly (dimethylsiloxane), Electrophoresis, 2000; 21: 27-40.

    Mutsaers S.E., Bishop J.E., McGrouther G., Laurent G.J., Mechanisms of tissue repair: from wound healing to fibrosis., Int. J. Biochem. Cell Biol., 1997 , 29 : 5-17.

    Mata A., Boehm C., Fleischman A.J., Muschler G., Roy S., Analysis of connective tissue progenitor cell behavior on polydimethylsiloxane smooth and channel microtextures, Biomed. Microdevices, 2002; 4: 267–275.

    Normand V., Lootens D.L., Amici E., Plucknett K.P., Aymard P., New Insight into Agarose Gel Mechanical Properties, Biomacromolecules , 2000; 1 : 730.

    Olander B., Wirs&eacute;n A., Albertsson A.C., Silicone elastomers with controlled surface composition using argon or hydrogen plasma treatment, J. Appl. Polym. Sci., 2003; 90: 1378-1383.

    Ohki K. and Kohashi O., Laminin promotes proliferation of bone marrow-derived macrophages, Cell Struct. Funct., 1994 ; 19: 63-71.

    Pelham R. J., Jr., Wang Y.L., Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA., 1997; 94:13661–13665.

    Paranjape M., Garra J., Brida S., Schneider T., White R., Currie J., Sensors and Actuators A: Physical, 2003; 104: 195–204.

    Penelope C.G., Paul A.J.,Cell type-specific response to growth on soft materials., J. Appl. Physiol. , 2005; 98 : 1547-1553.

    Parfitt A.M., The cellular basis of bone remodeling: The quantum concept reexamined in light of recent advances in the cell biology of bone, Calcif Tissue Int., 1984; 36: S37-S45.

    Peyton S.R., Putnam A.J. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell Physiol. , 2005; 204 : 198–209.

    Park K.H., Kun Na., Chung H.M., Enhancement of the adhesion of fibroblasts by peptide containing an Arg-Gly-Asp sequence with poly(ethylene glycol) into a thermo-reversible hydrogel as a synthetic extracellular matrix, Biotechnol. Lett. , 2005; 27: 227-23.

    Palsson B.O., Bhatia S.N., Tissue engineering, Pearson Prentice Hall, NJ, USA, 2004.

    Rammelt S., Illert T., Bierbaum S., Scharnweber D., Zwippa H., Schneidersa W., Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate, Biomaterials, 2006; 27: 5561–5571.

    Rowley J.A., Mooney D.J. , Alginate type and RGD density control myoblast phenotype. J Biomed. Mater. Res., 2002 ; 60: 217–23.

    Runyan R.B., Maxwell G.D., Shur B.D., Evidence for a novel enzymatic mechanism of neural crest cell migration on extracellular glycoconjugate matrices, J. of Cell Biol., 1986; 102: 432-441.

    Reich L., Stivale S.S., Elements of polymer degradation, McGrawhill, New York, 1971, 1.

    Raouf A., Seth A., Discovery of osteoblast-associated genes using cDNA microarrays. Bone , 2002; 30: 463 – 471.

    Reusch H.P., Chan G., Ives H.E., Nemenoff R.A., Activation of JNK/SAPK and ERK by mechanical strain in vascular smooth muscle cells depends on extracellular matrix composition., Biochem. Biophys. Res. Commun., 1997; 237 : 239–244.

    Rubin J., Rubin C., Jacobs C.R., Molecular pathways mediating mechanical signaling in bone: review, Gene, 2006; 367: 1–16.

    Rubin C., Lanyon L.E., Regulation of bone formation by applied dynamic loads., J. Bone Jt. Surg., 1984a; 66A: 397–402.

    Swary Fransiska, Ho M.H., The effects of surface micro-pattern on osteoblastic cell’s behavior, NTUST, master thesis, 2008.

    Sarkar S., Dadhania M., Rourke P., Desai T., Wong J.Y., Vascular tissue engineering: microtextured scaffold templatesto control organization of vascular smooth musclecells and extracellular matrix, Acta Biomaterialia, in
    review.

    Salber J. et al, Influence of different ECM mimetic peptide sequences embedded in a nonfouling environment on the specific adhesion of human skin keratinocytes and fibroblasts on deformable substrates, Small, 2007; 6: 1023-1031.

    Sikavitsas V.A., Temenoff J.S. ,Mikos A.G., Biomaterials and bone mechanotransduction, Biomaterials, 2001; 22: 2581-2593.

    Stein G.S., Lian J.B.,Transcriptional control of osteoblast growth and differentiation , Phys. Rev. , 1996 ; 76 : 593-629.

    Siebers M.C., Brugge P.J., Walboomers X.F., Jansen J.A., Integrins as linker proteins between osteoblasts and bone replacing materials: A critical review, Biomaterials, 2005; 26: 137-146.

    Salsmann A., Reckinger E.S., Kieffer N., RGD: the Rho’d to cell spreading, Eur. J. Cell Biol., 2006; 85: 249-254.

    Simpson T. R. E., Tabatabaian Z., Jeynes C., Parbhoo B., Keddie J. L., Influence of interfaces on the rates of crosslinking in poly(dimethyl siloxane) coatings , J. Polym. Sci., Part A: Polym. Chem. 2004; 42: 1421-1431.

    Smidsrod O., Haug A., Dependence upon the gel-sol state of the ion-exchange properties of alginates. Acta. Chem. Scand., 1972 ; 26 : 2063.

    Schwartz M.A., Integrins, oncogenes, and anchorage independence., J. Cell Biol., 1997; 139: 575–578.

    Salasznyk R.M., Klees R.F., Hughlock M.K., Plopper G.E., ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin., Cell Commun Adhes., 2004; 11:137–153.

    Sheetz M.P., Felsenfeld D.P., Galbraith C.G., Cell migration: regulation of force on extracellular matrix-integrin complexes., Trends Cell Biol., 1998; 8:51–54.

    Schwarzbauer J. E., Sechler J.L., Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly., Curr. Opin. Cell Biol., 1999; 11: 622– 627.

    Toda K.I., Grinnell F., Activation of fibronectin receptor function in relation to other ligand-receptor interactions, J. Invest. Dermatol., 1987; 88: 412-417.

    Taipale J. , Keski-Oja J., Growth factors in the extracellular matrix, FASEB J., 1997; 11: 51-59.

    Teixeira A.I., Nealey P.F., Murphy C.J., Responses of human keratocytes to micro- and nanostructured substrates. J. Biomed. Mater. Res., 2004.; 71A: 369-376.

    Tseng H., Peterson T.E., Berk B.C., Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells., 1995; Circ. Res . 77 : 869–878.

    Takeuchi Y., Suzawa M., Kikuchi T., Nishida E., Fujita T., Matsumoto T., Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha2beta1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J. Biol. Chem., 1997; 272:29309–29316.

    Tamura Y., Takeuchi Y., Suzawa M., Fukumoto S., Kato M., Miyazono K., Fujita T., Focal adhesion kinase activity is required for bone morphogenetic protein—Smad1 signaling and osteoblastic differentiation in murine MC3T3-E1 cells. , J. Bone Miner. Res., 2001; 16:1772–1779.
    Vailhe B., Ronot X., Tracqui P., Usson Y., Tranqui L., In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin localization., In Vitro Cell Dev. Biol. Anim. ,1997; 33 : 763–73.

    Vaday G.G., Franitza S., Schor H., Hecht I., Brill A., Cahalon L., Hershkoviz R., Lider O., Combinatorial signals by inflammatory cytokines and chemokines mediate leukocyte interactions with extracellular matrix, J. Leukocyte Biol., 2001; 69: 885 – 892.

    Wang H.B., Dembo M., Hanks S.K., Wang Y.L., Focal adhesion kinase is involved in mechanosensing during fibroblast migration , Proc. Natl. Acad. Sci. USA , 2001; 98 : 11295-11300.

    Wang H.B., Dembo M., Wang Y.L., Substrate flexibility regulates growth and apoptosis of normal but not transformed cells, Am. J. Physiol. , 2000; 279 : C1345-C1350.

    Walboomers X.F., Ginsel L.A., Jansen J.A., Early spreading events of fibroblasts on microgrooved substrates., J. Biomed. Mater. Res., 2000; 51: 529-534.

    Wang E.A., Israel D.I., Kelly S. , Luxenberg D.P., Bone morphogenetic protein-2 causes commitment and differentiation of C3H10T1/2 and 3T3 cells, Growth factors, 1993; 9: 57-71.

    Werb Z., Tremble P.M., Behrendtsen O., Crowley E., Damsky C.H., Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression, J. Cell Biol., 1989 ; 109: 877-889.

    Wong J.Y., Leach J.B., Brown X.Q., Balance of chemistry, topography, and mechanics at the cell–biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response. Surf. Sci., 2004; 570: 119-113.

    Wadhwa S., Godwin S.L., Peterson D.R., Epstein M.A., Raisz L.G., Pilbeam C.C., Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway. J Bone Miner. Res., 2002; 17:266–274.

    Wang N., Butler J.P., Ingber D.E., Mechanotransduction across the cell surface and through the cytoskeleton., Science., 1993; 260: 1124–1127.

    Xia Y.N. , Whitesides G.M., Soft lightography, Annu. Rev. Mater. Sci., 1998; 28: 153–84.

    Brown X.Q., Ookawa K., Wong T.Y., Evaluation of polydimethylsiloxane scaffolds with physiologically relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response, Biomaterials, 2005 ; 26: 3123-3129.

    Xiao G., Jiang D., Thomas P., Benson M.D., Guan K., Karsenty G., Franceschi R.T., MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1., J. Biol. Chem., 2000; 275:4453–4459.

    Xiao G., Gopalakrishnan R., Jiang D., Reith E., Benson M.D., Franceschi R.T., Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells., J Bone Miner. Res., 2002a; 17:101–110.

    Xiao G., Jiang D., Gopalakrishnan R., Franceschi R.T., Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2., J. Biol. Chem., 2002b; 277 : 36181–36187.

    Yeung T., Georges P.C., Flanagan L.A., Marg B., Ortiz M., Funaki M., Zahir N., Ming W., Weaver V. and Janmey P.A., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motil. Cytoskeleton , 2005; 60:24–34.

    Yasuda H.K., Miyama M., Yang Y., Yasuda T., Okuno T., Static and dynamic contact angles of water on polymeric surfaces, Langmuir, 1997; 13: 5494-5503.

    Yu B.Y., Chou P.H., Sun Y.M., Lee Y.T., Young T.H., Topological micropatterned membranes and its effect on the morphology and growth of human mesenchymal stem cells (hMSCs), J. Membr. Sci., 2006, 273: 31–37.

    Yi F., Wu H. and Jia G.L., Formulation and characterization of poly (DL-lactide-co-glycolide) nanoparticle containing vascular endothelial growth factor for gene delivery, J. Clin. Pharm. Therap. , 2006; 31: 43-48.

    Zhang C.S., Xu J.L., Ma W.L., Zheng W.L., PCR microfluidic devices for DNA amplification, Biotechnol. Adv., 2006; 24: 243–284.

    Zaari N., Rajagopalan P., Kim S.Y., Engler A., Wong J.Y., Photopolymeriation in microfluidic gradient generators: microscale control scale of substrate compliance to manipulate cell response., Adv. Mater., 2004; 16:23-24.

    無法下載圖示 全文公開日期 2014/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE