簡易檢索 / 詳目顯示

研究生: 蔡曉靚
Hsiao-Ching Tsai
論文名稱: 乙醇促進人類口腔細胞凋亡之效應及探討過程中Matriptase活化之影響
Effects of Ethanol on Apoptosis and Matriptase Activation in Human Oral Cells
指導教授: 高震宇
Chen-Yu Kao
李曉屏
Shiao-Pieng Lee
王正康
Jehng-Kang Wang
口試委員: 江建平
Chien-Ping Chiang
白孟宜
Meng-Yi Bai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 102
中文關鍵詞: 醇脫氫酶醛脫氫酶乙醇活性氧化物細胞凋亡口腔癌人類口腔角化細胞
外文關鍵詞: alcohol dehydrogenase, aldehyde dehydrogenase, oral epidermoid carcinoma, normal human oral keratinocyte
相關次數: 點閱:293下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酒精(乙醇)在人體內的分解代謝,主要經由氧化途徑完成,參與的酶系統包括醇脫氫酶(ADH)、醛脫氫酶(ALDH)、過氧化氫酶(catalase)和微粒體乙醇氧化系統(MEOS)。ADH與ALDH組成因種族差異而不同,其表現及分佈亦因組織而異,因而影響不同族群個體的飲酒行為,以及在體內不同部位的乙醇代謝效應,進而影響組織器官傷害的發生。乙醇會抑制細胞生長與影響細胞正常的生理功能,促使細胞走向凋亡的路徑,而乙醇代謝產物乙醛則是具有細胞毒性與致癌性,乙醛可與DNA共價結合形成加成產物誘發基因突變。本研究目的為以人類口腔癌細胞(OECM-1)以及人類正常口腔細胞(NHOK)為實驗對象,探討經乙醇處理後,乙醇及其代謝物產生的氧化壓力,所造成的細胞凋亡效應。經過實驗驗後,乙醇的確會引發OEC-M1進行細胞凋亡,在進一步的探討後,發現乙醇的代謝物:乙醛,有較強引發細胞凋亡的作用。當我們分別口腔癌細胞株與正常口腔初代培養的細胞(NHOK)來比較時,OEC-M1具有抗性,因此有較低比例的細胞進行細胞凋亡反應。另外,根據文獻最近被發現的一個新的蛋白分解酶:matriptase,參與許多的癌病變,包含:乳癌、卵巢癌、前列腺癌、肺癌、大腸癌、腎癌以及口腔癌等,當癌症越末期,matriptase表達的量越高,也有越多的matriptase被活化。因此,我們進一步來觀察乙醇對matriptase的影響,我們發現matriptase會被乙醇活化,matriptase可能是乙醇引發癌病變的另一個可能的路徑。


    Several enzymes are involved in ethanol metabolism. Whereas alcohol dehydrogenase (ADH) metabolizes the bulk of ethanol in the liver, other enzymes, such as cytochrome P4502E1 and catalase, also contributes to the production of acetaldehyde from ethanol oxidation. Futhermore, acetaldehyde can be metabolized to form acetate by aldehyde dehydrogenase (ALDH). In humans, genetic polymorphisms of enzymes ethanol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are also associated with ethanol habits. Ethanol consumption increase apoptosis of cell, and human body. Acetaldehyde promotes adducts formation, as well as DNA damage, which promotes mutagenesis. Apoptosis is an active, tightly regulated, cell death program that enables organisms to actively eliminate damaged, senescent, or unwanted cells during embryogenesis, maturation of immune system, and adult tissue turnover. In this study, we utilized oral cells to learn the possible tumorigenesis mechanism in oral cancer. When oral cancer cell line (OEC-M1) were treated with ethanol, we did observe increased apoptosis ratio. When OEC-M1 cells were treated with ALDH inhibitor, acetaldehyde was increased. Therefore acetaldehyde can trigger stronger apoptosis signal. When we further study the mechanism, we found ROS (reactive oxygen species) could play the crucial role to regulate ethanol-induced apoptosis. Sine OEC-M1 is a cancer cell line, OEC-M1 shows stronger resistance than NHOK (normal human oral keratinocyte) cells. Recent studies have shown matriptase, a novel protease, could be important in different cancers: breast cancer, ovarian cancer, prostate cancer, lung cancer, colon cancer, kidney cancer, and oral cancer. For late stage ceancers, matriptase expression is increased and the activation is increased as well. Thus, we tried to moniter the activation of matriptase when cells were treated with ethanol. We found ethanol did activate matriptase in OEC-M1. Matriptase activation could be another mechanism to trigger tumorigenesis in oral cancer.

    中文摘要…………………………………………………………………I Abstract………………………………………………………………II 致謝…………………………………………………………………III 目錄…………………………………………………………………IV 表目錄…………………………………………………………………VI 圖目錄…………………………………………………………………VII第一章 緒論………………………………………………………1 1-1 酒精之代謝………………………………………………1 1-1-1人類醇脫氫酶族……………………………………………3 1-1-2人類醛脫氫酶族……………………………………………6 1-1-3 乙醇代謝與細胞傷害 ………………………………………9 1-1-4 細胞凋亡與生長恆定 ………………………………………9 1-1-5 乙醇代謝產生之活化氧化物………………………………11 1-2 活性氧化物……………………………………………12 1-2-1 氧自由基……………………………………………13 1-2-2 活性氧化物造成損傷的機制………………………14 1-2-3 對活性氧化物的防禦機制…………………………15 1-3 蛋白酶…………………………………………………16 1-4 matriptase……………………………………………17 1-4-1 matriptase 的發現…………………………………17 1-4-2 matriptase 的結構…………………………………18 1-4-3 matriptase的活化機制………………………………19 1-4-4 matriptase生理功能…………………………………20 1-4-5 matriptase與癌症之關係……………………………21 1-5肝細胞生長因子活化抑制蛋白HAI-1……………………22 1-5-1 HAI-1的發現與結構…………………………………22 1-5-2 HAI-1對matriptase的調控………………………22 1-6 口腔癌………………………………………………23 1-6-1 口腔癌簡介………………………………………23 1-6-2 口腔癌的危險因子……………………………23 1-6-3 酒精與口腔癌…………………………………24 1-7選擇人類口腔細胞為實驗模式…………………25 1-8 實驗目的…………………………………………26 第二章 實驗方法及設備………………………………… 27 2-1 實驗材料……………………………………………… 27 2-2 緩衝液與SDS-PAGE之配製…………………………… 30 2-2-1緩衝液(Buffer)…………………………………30 2-2-2 SDS-GEL (8.5% gel)……………………………31 2-2-3 SDS-GEL (12% gel) ……………………………32 2-3 人類牙齦上皮癌細胞細胞培養……………………33 2-4 正常人類口腔上皮細胞細胞培養 …………………34 2-5 細胞加藥處理………………………………………35 2-6 蛋白質濃度測定……………………………………35 2-7 西方點墨法樣本之製備……………………………36 2-8 西方點墨法…………………………………………37 2-9 濃縮…………………………………………………39 2-10 細胞凋亡之分析…………………………………40 2-11 活性氧化物的偵測………………………………41 第三章 實驗結果 ………………………………………42 3-1 經乙醇處理OEC-M1細胞形態之改變………………42 3-2 經乙醇處理OEC-M1和NHOK細胞形態改變…………42 3-3 不同乙醇濃度以及作用時間,對OEC-M1凋亡效應之影響…… 43 3-4 比較OEC-M1及NHOK經乙醇處理後細胞凋亡之效應…………… 43 3-5 人類ADH在OEC-M1經乙醇處理後造成細胞凋亡效應所扮演之角色………………………………………………………………………44 3-6 乙醇代謝物乙醛對OEC-M1造成細胞凋亡效應之影響………44 3-7 人類ALDH在OEC-M1經乙醇處理後造成細胞凋亡效應所扮之演角色……………………………………………………………………… 45 3-8 經乙醇及乙醛作用後OEC-M1中ROS的變化………………46 3-9 ADH及ALDH在OEC-M1產生氧化壓力之影響………………47 3-10 於不同時間點以相同濃度乙醇處理後,OEC-M1中活化態matriptase之表現……………………………………………49 3-11 經乙醇處理後,OEC-M1中活化態matriptase之表現……49 3-12 觀察同時加入乙醇以及DTT處理後,口腔癌細胞中活化態matriptase之表現 ……………………………………………49 第四章 討論…………………………………………………51 4-1 乙醇對OEC-M1細胞及NHOK細胞所造成細胞凋亡之效應……51 4-2 乙醇代謝物產物乙醛對OEC-M1細胞造成細胞凋亡之效應…54 4-3 乙醇代謝過程產生之ROS對OEC-M1細胞造成細胞凋亡之效應………………………………………………………………55 4-4 經乙醇作用後OEC-M1中matriptase之表現與變化……57 第五章 結論與未來計畫……………………………………59 第六章 參考文獻……………………………………………60

    1. Helzer, J.E., et al., Alcoholism--North America and Asia. A comparison of population surveys with the Diagnostic Interview Schedule. Arch Gen Psychiatry, 1990. 47(4): p. 313-9.
    2. Lieber, C.S., Alcohol and the liver: 1994 update. Gastroenterology, 1994. 106(4): p. 1085-105.
    3. Bosron, W.F., T. Ehrig, and T.K. Li, Genetic factors in alcohol metabolism and alcoholism. Semin Liver Dis, 1993. 13(2): p. 126-35.
    4. Monica R. Brzezinskia, b., Trent L. Abrahama, b, Carol L. Stonea, b, Robert A. Dean∗, William F. Bosron, Biochemical Pharmacology. Vol. 48. 1747–1755.
    5. Sladek, N.E., Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol, 2003. 17(1): p. 7-23.
    6. Duester, G., et al., Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem Pharmacol, 1999. 58(3): p. 389-95.
    7. Han, C.L., et al., Contribution to first-pass metabolism of ethanol and inhibition by ethanol for retinol oxidation in human alcohol dehydrogenase family--implications for etiology of fetal alcohol syndrome and alcohol-related diseases. Eur J Biochem, 1998. 254(1): p. 25-31.
    8. Yoshida, A., et al., Human aldehyde dehydrogenase gene family. Eur J Biochem, 1998. 251(3): p. 549-57.
    9. Yokoyama, A. and T. Omori, Genetic polymorphisms of alcohol and aldehyde dehydrogenases and risk for esophageal and head and neck cancers. Jpn J Clin Oncol, 2003. 33(3): p. 111-21.
    10. Hurley, T.D., H.J. Edenberg, and W.F. Bosron, Expression and kinetic characterization of variants of human beta 1 beta 1 alcohol dehydrogenase containing substitutions at amino acid 47. J Biol Chem, 1990. 265(27): p. 16366-72.
    11. Yin, S.J., et al., Alcohol and aldehyde dehydrogenases in human esophagus: comparison with the stomach enzyme activities. Alcohol Clin Exp Res, 1993. 17(2): p. 376-81.
    12. Hoog, J.O., et al., The gamma 1 and gamma 2 subunits of human liver alcohol dehydrogenase. cDNA structures, two amino acid replacements, and compatibility with changes in the enzymatic properties. Eur J Biochem, 1986. 159(2): p. 215-8.
    13. Hoog, J.O., et al., Structure of the class II enzyme of human liver alcohol dehydrogenase: combined cDNA and protein sequence determination of the pi subunit. Biochemistry, 1987. 26(7): p. 1926-32.
    14. Hoog, J.O., M. Estonius, and O. Danielsson, Site-directed mutagenesis and enzyme properties of mammalian alcohol dehydrogenases correlated with their tissue distribution. EXS, 1994. 71: p. 301-9.
    15. Estonius, M., et al., Distribution of alcohol and sorbitol dehydrogenases. Assessment of mRNA species in mammalian tissues. Eur J Biochem, 1993. 215(2): p. 497-503.
    16. Kaiser, R., et al., Class III human liver alcohol dehydrogenase: a novel structural type equidistantly related to the class I and class II enzymes. Biochemistry, 1988. 27(4): p. 1132-40.
    17. Vallee, B.L. and T.J. Bazzone, Isozymes of human liver alcohol dehydrogenase. Isozymes Curr Top Biol Med Res, 1983. 8: p. 219-44.
    18. Lee, S.L., J.O. Hoog, and S.J. Yin, Functionality of allelic variations in human alcohol dehydrogenase gene family: assessment of a functional window for protection against alcoholism. Pharmacogenetics, 2004. 14(11): p. 725-32.
    19. Kaiser, R., et al., Origin of the human alcohol dehydrogenase system: implications from the structure and properties of the octopus protein. Proc Natl Acad Sci U S A, 1993. 90(23): p. 11222-6.
    20. Ang, H.L., et al., Expression patterns of class I and class IV alcohol dehydrogenase genes in developing epithelia suggest a role for alcohol dehydrogenase in local retinoic acid synthesis. Alcohol Clin Exp Res, 1996. 20(6): p. 1050-64.
    21. Liu, Y., J.T. Curtis, and Z. Wang, Vasopressin in the lateral septum regulates pair bond formation in male prairie voles (Microtus ochrogaster). Behav Neurosci, 2001. 115(4): p. 910-9.
    22. Beisswenger, T.B., B. Holmquist, and B.L. Vallee, chi-ADH is the sole alcohol dehydrogenase isozyme of mammalian brains: implications and inferences. Proc Natl Acad Sci U S A, 1985. 82(24): p. 8369-73.
    23. Mori, O., et al., Histological distribution of class III alcohol dehydrogenase in human brain. Brain Res, 2000. 852(1): p. 186-90.
    24. Estonius, M., S. Svensson, and J.O. Hoog, Alcohol dehydrogenase in human tissues: localisation of transcripts coding for five classes of the enzyme. FEBS Lett, 1996. 397(2-3): p. 338-42.
    25. Moreno, A. and X. Pares, Purification and characterization of a new alcohol dehydrogenase from human stomach. J Biol Chem, 1991. 266(2): p. 1128-33.
    26. Stone, C.L., et al., Purification and partial amino acid sequence of a high-activity human stomach alcohol dehydrogenase. Alcohol Clin Exp Res, 1993. 17(4): p. 911-8.
    27. Chou, C.F., et al., Kinetic mechanism of human class IV alcohol dehydrogenase functioning as retinol dehydrogenase. J Biol Chem, 2002. 277(28): p. 25209-16.
    28. Enzymology and molecular biology of carbonyl metalbolism 3. Proceedings of the Fifth International Workshop on Enzymology and Molecular Biology of Carbonyl Metabolism. June 12-15, 1990, West Lafayette, Indiana. Adv Exp Med Biol, 1991. 284: p. 1-345.
    29. Dong, Y.J., T.K. Peng, and S.J. Yin, Expression and activities of class IV alcohol dehydrogenase and class III aldehyde dehydrogenase in human mouth. Alcohol, 1996. 13(3): p. 257-62.
    30. Yin, S.J., et al., Human stomach alcohol and aldehyde dehydrogenases: comparison of expression pattern and activities in alimentary tract. Gastroenterology, 1997. 112(3): p. 766-75.
    31. Baraona, E., et al., Lack of alcohol dehydrogenase isoenzyme activities in the stomach of Japanese subjects. Life Sci, 1991. 49(25): p. 1929-34.
    32. Kurys, G., W. Ambroziak, and R. Pietruszko, Human aldehyde dehydrogenase. Purification and characterization of a third isozyme with low Km for gamma-aminobutyraldehyde. J Biol Chem, 1989. 264(8): p. 4715-21.
    33. Forte-McRobbie, C.M. and R. Pietruszko, Purification and characterization of human liver "high Km" aldehyde dehydrogenase and its identification as glutamic gamma-semialdehyde dehydrogenase. J Biol Chem, 1986. 261(5): p. 2154-63.
    34. Jakoby, W.B. and D.M. Ziegler, The enzymes of detoxication. J Biol Chem, 1990. 265(34): p. 20715-8.
    35. Hempel, J., H. von Bahr-Lindstrom, and H. Jornvall, Aldehyde dehydrogenase from human liver. Primary structure of the cytoplasmic isoenzyme. Eur J Biochem, 1984. 141(1): p. 21-35.
    36. Hsu, L.C., A. Yoshida, and T. Mohandas, Chromosomal assignment of the genes for human aldehyde dehydrogenase-1 and aldehyde dehydrogenase-2. Am J Hum Genet, 1986. 38(5): p. 641-8.
    37. Ambroziak, W., G. Izaguirre, and R. Pietruszko, Metabolism of retinaldehyde and other aldehydes in soluble extracts of human liver and kidney. J Biol Chem, 1999. 274(47): p. 33366-73.
    38. Sladek, N.E. and G.J. Landkamer, Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase activity in cultured oxazaphosphorine-resistant L1210 and cross-linking agent-resistant P388 cell lines. Cancer Res, 1985. 45(4): p. 1549-55.
    39. Hsu, L.C. and W.C. Chang, Cloning and characterization of a new functional human aldehyde dehydrogenase gene. J Biol Chem, 1991. 266(19): p. 12257-65.
    40. Sophos, N.A. and V. Vasiliou, Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact, 2003. 143-144: p. 5-22.
    41. Hempel, J., H. Von Bahr-Lindstrom, and H. Jornvall, Structural relationships among aldehyde dehydrogenases. Pharmacol Biochem Behav, 1983. 18 Suppl 1: p. 117-21.
    42. Hsu, L.C., et al., Cloning of cDNAs for human aldehyde dehydrogenases 1 and 2. Proc Natl Acad Sci U S A, 1985. 82(11): p. 3771-5.
    43. Bhat, P.V., L. Poissant, and X.L. Wang, Purification and partial characterization of bovine kidney aldehyde dehydrogenase able to oxidize retinal to retinoic acid. Biochem Cell Biol, 1996. 74(5): p. 695-700.
    44. Wang, X., P. Penzes, and J.L. Napoli, Cloning of a cDNA encoding an aldehyde dehydrogenase and its expression in Escherichia coli. Recognition of retinal as substrate. J Biol Chem, 1996. 271(27): p. 16288-93.
    45. Yoshida, A., I.Y. Huang, and M. Ikawa, Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci U S A, 1984. 81(1): p. 258-61.
    46. Higuchi, S., et al., Alcohol and aldehyde dehydrogenase polymorphisms and the risk for alcoholism. Am J Psychiatry, 1995. 152(8): p. 1219-21.
    47. Hsu, L.C., et al., The human aldehyde dehydrogenase 3 gene (ALDH3): identification of a new exon and diverse mRNA isoforms, and functional analysis of the promoter. Gene Expr, 1996. 6(2): p. 87-99.
    48. King, G. and R. Holmes, Human corneal and lens aldehyde dehydrogenases. Purification and properties of human lens ALDH1 and differential expression as major soluble proteins in human lens (ALDH1) and cornea (ALDH3). Adv Exp Med Biol, 1997. 414: p. 19-27.
    49. Algar, E.M., et al., Purification and properties of baboon corneal aldehyde dehydrogenase: proposed UVR protective role. Adv Exp Med Biol, 1991. 284: p. 53-60.
    50. Lindahl, R., Aldehyde dehydrogenases and their role in carcinogenesis. Crit Rev Biochem Mol Biol, 1992. 27(4-5): p. 283-335.
    51. Homann, N., Alcohol and upper gastrointestinal tract cancer: the role of local acetaldehyde production. Addict Biol, 2001. 6(4): p. 309-323.
    52. Donohue, T.M., Jr., et al., Use of cultured cells in assessing ethanol toxicity and ethanol-related metabolism. Alcohol Clin Exp Res, 2001. 25(5 Suppl ISBRA): p. 87S-93S.
    53. Badger, T.M., et al., Alcohol metabolism: role in toxicity and carcinogenesis. Alcohol Clin Exp Res, 2003. 27(2): p. 336-47.
    54. Peng, G.S., et al., Involvement of acetaldehyde for full protection against alcoholism by homozygosity of the variant allele of mitochondrial aldehyde dehydrogenase gene in Asians. Pharmacogenetics, 1999. 9(4): p. 463-76.
    55. Yokoyama, A. and T. Omori, Genetic polymorphisms of alcohol and aldehyde dehydrogenases and risk for esophageal and head and neck cancers. Alcohol, 2005. 35(3): p. 175-85.
    56. Seitz, H.K., et al., Alcohol and cancer. Alcohol Clin Exp Res, 2001. 25(5 Suppl ISBRA): p. 137S-143S.
    57. Brooks, P.J., DNA damage, DNA repair, and alcohol toxicity--a review. Alcohol Clin Exp Res, 1997. 21(6): p. 1073-82.
    58. Zimmerman, B.T., et al., Mechanisms of acetaldehyde-mediated growth inhibition: delayed cell cycle progression and induction of apoptosis. Alcohol Clin Exp Res, 1995. 19(2): p. 434-40.
    59. Jankala, H., et al., Combined calcium carbimide and ethanol treatment induces high blood acetaldehyde levels, myocardial apoptosis and altered expression of apoptosis-regulating genes in rat. Alcohol Alcohol, 2002. 37(3): p. 222-8.
    60. Wyllie, A.H., Apoptosis and carcinogenesis. Eur J Cell Biol, 1997. 73(3): p. 189-97.
    61. Kroemer, G., B. Dallaporta, and M. Resche-Rigon, The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol, 1998. 60: p. 619-42.
    62. Turrens, J.F. and A. Boveris, Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J, 1980. 191(2): p. 421-7.
    63. Cunningham, C.C., W.B. Coleman, and P.I. Spach, The effects of chronic ethanol consumption on hepatic mitochondrial energy metabolism. Alcohol Alcohol, 1990. 25(2-3): p. 127-36.
    64. Moslen, M.T., Reactive oxygen species in normal physiology, cell injury and phagocytosis. Adv Exp Med Biol, 1994. 366: p. 17-27.
    65. Wei, Y.H., et al., Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann N Y Acad Sci, 1998. 854: p. 155-70.
    66. Esterbauer, H. and K.H. Cheeseman, Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol, 1990. 186: p. 407-21.
    67. Shi, Y.E., et al., Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res, 1993. 53(6): p. 1409-15.
    68. Lin, C.Y., et al., Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem, 1999. 274(26): p. 18231-6.
    69. Takeuchi, T., et al., Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem, 2000. 275(34): p. 26333-42.
    70. Oberst, M.D., et al., The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem, 2003. 278(29): p. 26773-9.
    71. Lin, C.Y., et al., Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci, 2008. 13: p. 621-35.
    72. Hung, R.J., et al., Assembly of adherens junctions is required for sphingosine 1-phosphate-induced matriptase accumulation and activation at mammary epithelial cell-cell contacts. Am J Physiol Cell Physiol, 2004. 286(5): p. C1159-69.
    73. Lee, M.S., et al., Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. Am J Physiol Cell Physiol, 2005. 288(4): p. C932-41.
    74. Benaud, C.M., et al., Deregulated activation of matriptase in breast cancer cells. Clin Exp Metastasis, 2002. 19(7): p. 639-49.
    75. Tseng, I.C., et al., Matriptase activation, an early cellular response to acidosis. J Biol Chem, 2010. 285(5): p. 3261-70.
    76. List, K., et al., Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene, 2002. 21(23): p. 3765-79.
    77. Lee, S.L., R.B. Dickson, and C.Y. Lin, Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem, 2000. 275(47): p. 36720-5.
    78. Ihara, S., et al., Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching. J Biol Chem, 2002. 277(19): p. 16960-7.
    79. Oberst, M.D., et al., Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res, 2002. 8(4): p. 1101-7.
    80. Baba, T., et al., Loss of membrane-bound serine protease inhibitor HAI-1 induces oral squamous cell carcinoma cells' invasiveness. J Pathol, 2012. 228(2): p. 181-92.
    81. Tsai, W.C., et al., Increasing EMMPRIN and matriptase expression in hepatocellular carcinoma: tissue microarray analysis of immunohistochemical scores with clinicopathological parameters. Histopathology, 2006. 49(4): p. 388-95.
    82. Oberst, M.D., et al., HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol, 2005. 289(2): p. C462-70.
    83. Chen, Y.C., et al., Alcohol metabolism and cardiovascular response in an alcoholic patient homozygous for the ALDH2*2 variant gene allele. Alcohol Clin Exp Res, 1999. 23(12): p. 1853-60.
    84. Vogelstein, B. and K.W. Kinzler, p53 function and dysfunction. Cell, 1992. 70(4): p. 523-6.
    85. Hsieh, L.L., et al., Characteristics of mutations in the p53 gene in oral squamous cell carcinoma associated with betel quid chewing and cigarette smoking in Taiwanese. Carcinogenesis, 2001. 22(9): p. 1497-503.
    86. Miyashita, T., et al., Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994. 9(6): p. 1799-805.
    87. Polverini, P.J. and J.E. Nor, Apoptosis and predisposition to oral cancer. Crit Rev Oral Biol Med, 1999. 10(2): p. 139-52.
    88. Krajewski, S., et al., Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res, 1995. 55(19): p. 4471-8.
    89. Bagnardi, V., et al., Alcohol consumption and the risk of cancer: a meta-analysis. Alcohol Res Health, 2001. 25(4): p. 263-70.
    90. Stoll, C., et al., Prognostic significance of apoptosis and associated factors in oral squamous cell carcinoma. Virchows Arch, 2000. 436(2): p. 102-8.
    91. Birchall, M., et al., Apoptosis and mitosis in oral and oropharyngeal epithelia: evidence for a topographical switch in premalignant lesions. Cell Prolif, 1996. 29(8): p. 447-56.
    92. Elwood, J.M., et al., Alcohol, smoking, social and occupational factors in the aetiology of cancer of the oral cavity, pharynx and larynx. Int J Cancer, 1984. 34(5): p. 603-12.
    93. Hoek, J.B. and J.G. Pastorino, Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol, 2002. 27(1): p. 63-8.
    94. Patel, T., G.J. Gores, and S.H. Kaufmann, The role of proteases during apoptosis. FASEB J, 1996. 10(5): p. 587-97.
    95. Thornberry, N.A. and Y. Lazebnik, Caspases: enemies within. Science, 1998. 281(5381): p. 1312-6.
    96. Fang, J.L. and C.E. Vaca, Detection of DNA adducts of acetaldehyde in peripheral white blood cells of alcohol abusers. Carcinogenesis, 1997. 18(4): p. 627-32.
    97. Muto, M., et al., Risk of multiple squamous cell carcinomas both in the esophagus and the head and neck region. Carcinogenesis, 2005. 26(5): p. 1008-12.
    98. Li, S.Y., et al., Overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene prevents acetaldehyde-induced cell injury in human umbilical vein endothelial cells: role of ERK and p38 mitogen-activated protein kinase. J Biol Chem, 2004. 279(12): p. 11244-52.
    99. Chandrasekaran, K., et al., Increased oxidative stress and toxicity in ADH and CYP2E1 overexpressing human hepatoma VL-17A cells exposed to high glucose. Integr Biol (Camb), 2012. 4(5): p. 550-63.
    100. Circu, M.L. and T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med, 2010. 48(6): p. 749-62.
    101. Chen, C.J., et al., Increased matriptase zymogen activation in inflammatory skin disorders. Am J Physiol Cell Physiol, 2011. 300(3): p. C406-15.
    102. Ha, S.Y., et al., Overexpression of matriptase correlates with poor prognosis in esophageal squamous cell carcinoma. Virchows Arch, 2014. 464(1): p. 19-27.

    QR CODE