簡易檢索 / 詳目顯示

研究生: 吳京儒
Ching-Ju Wu
論文名稱: 全生物分解型聚酯合膠製備、相容與抗張性質研究
Preparation and Investigation of Compatable and Tensile Properties of Entirely Biodegradable Polyester Blends
指導教授: 楊銘乾
Ming-Chien Yang
葉正濤
Jen-Taut Yeh
口試委員: 吳進三
Chin-San Wu
陳幹男
K. -N. Chen
姚薇華
Wei-Hua Yao
許耀基
Yao-Chi Shu
洪輝嵩
H.-S. Huo
黃繼遠
Chi-Yuan Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 130
中文關鍵詞: 聚乳酸聚乙烯醇聚己內酯多壁奈米碳管結晶動力學合膠物
外文關鍵詞: biodegradable polyesters, crystallization kinetics
相關次數: 點閱:357下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是針對全降解型生物可分解之聚酯類的聚乳酸(Poly lactic acid, PLA)/聚乙烯醇 ((poly(vinyl alcohol), PVA)、聚乳酸(Poly lactic acid, PLA)/聚己內酯 ( poly(ε-caprolactone), PCL) 合膠及在聚己內酯內混摻多壁奈米碳管 (multi-walled carbon nanotubes, MWNTs)在不同混掺配方下所得之合膠的抗張、熱學、結晶、微細結構等性質的研究討論。
    首先,將PLA和PVA依不同比例熔融混摻製備成 PLAxPVAy合膠樣品。經扭矩(torque) 分析發現,PLAxPVAy合膠樣品所對應”穩定扭矩”與”穩定時間”隨PLA含量增加而明顯降低。經傅立葉紅外光譜 (Fourier-transform Infrared Spectrum, FTIR)觀測發現 ,隨PVA含量增加PLAxPVAy合膠樣品之羰基和羥基之振動吸收峰峰值,明顯向低波數位移;上述結果顯示此兩官能基會相互作用,有利於PLA及PVA分子相容性提昇。 再由DSC曲線、廣角X-射線繞射和偏光顯微鏡分析顯示,PVA可以作為成核劑促進PLA結晶。其中偏光顯微鏡分析觀察發現,經添加20 wt% PVA的PLA80PVA20合膠樣品其PLA球晶成長速率(spherulite growth rate)最快。 PLAxPVAy合膠樣品熱重示差分析(TGA)結果發現PLA80 PVA20合膠樣品”第二熱降解步驟”消失。
    第二部份是將PLA和PCL依不同比例熔融混摻製備成 PLAx PCLy合膠樣品,並研究其抗張、熱學、結晶微細結構及光學等性質。從DSC分析結果顯示,PLA及PCL熔融溫度(Tm)會隨PLAxPCLy合膠中的PCL含量增加而靠近;且當PLA含量達70wt%時, PLA70PCL30合膠樣品之PLA及PCL 之Tm值最為靠近。上述結果推論PLA70PCL30合膠樣品內PLA與PCL分子間存在最大之交互作用力。 另結合動態力學分析和電子顯微鏡表面型態觀察結果揭示,PLA和PCL分子間僅能形成部份相容現象,在其非晶區中僅少量的PCL溶入PLA富相(PLA-rich phase)中,導致PLA玻璃轉移溫度(Tg)降低。 由偏光顯微鏡分析結果發現,在PLAxPCLy合膠樣品冷卻結晶過程中,PCL可能扮演成促進PLA的結晶的角色。 其中經添加30 wt% PCL的PLA70PCL30合膠樣品其PLA 球晶成長速率最快,所形成的PLA 球晶可達最大。最後由PLAxPCLy合膠樣品的機械性質顯示,可藉添加適量PCL將PLA的機械性質由脆性轉為韌性。
    第三部分研究是用熔融混摻的方法製備PCL/多壁奈米碳管(MWNTs)共混樣品。為了克服PCL與多壁奈米碳管間較差的相容性質,製備時選用丙烯酸接枝PCL(PCL-g-AA)和改質後含羥基多壁奈米碳管(MWNTs-OH)進行共混。比較PCL-g-AA /MWNTs-OH和PCL /MWNTs共混樣品間的差異時發現,前者的熱學和力學性質均優於後者; 舉例來說,僅添加5wt%的MWNTs-OH 就可大幅提升其初始熱分解溫度約77℃。 上述這種現象乃歸因於PCL-g-AA的羧酸基和MWNTs-OH的羥基反應形成酯基所致。最後發現最適化的MWNTs-OH添加量為5wt%,因為過多的MWNTs-OH,反而造成有機、無機的相分離而降低其相容性。


    Three mixture systems of biodegradable polymers were prepared through melt blending processes in this thesis including poly(lactic acid) (PLA)/poly(vinyl alcohol) (PVA), PLA/poly(ε-caprolactone ) (PCL), and PCL/modified multi-walled carbon nanotubes (MWNTs). The properties of these mixtures investigated are including tensile propteies, thermal properties, crystallinity, microstructures, and optical properties.
    In the first part, PLA and PVA were blended in various ratios by means of the melt blending method. The result of torque measurements and TGA tests showed that the addition of PLA can decrease the melt viscosity of PVA and that the second degradation step of PVA nearly disappeared for the PLA80PVA20 blend. The absorbance peaks of the carbonyl group and the hydroxyl group in the FTIR spectra of PLAxPVAy blends had significant shifts to lower wave numbers, indicating that there were interactions between these two groups. Combined with the result of DSC curves, this interaction would be favorable for improving miscibility. The XRD diffraction patterns and the PLM micrographs showed that PVA can serve as a nucleating agent to promote the crystallization of PLA in the PLAxPVAy blends. Moreover, the PLA80PVA20 blend gave the highest growth rate of PLA spherulite.
    In the second part, a series of blends of PLA and PCL with different mass ratio were prepared by means of the melt blending method to study their crystallization, miscibility, morphology, and thermal and mechanical properties. The result of DSC tests showed that the melting temperatures of PLA and PCL shifted toward each other, and that the largest shift appeared at the PLA70PCL30 blend. This result reveals that the PLA70PCL30 blend gives the strongest interaction between these two polymers. The results of dynamic mechanical analysis and SEM morphologies show that PLA and PCL form a partial miscible blend, in which an amount of amorphous PCL is dissolved in the PLA-rich phase, leading to a depression of the Tg value. The polarized optical micrographs showed that PCL can serve as a nucleating agent to promote PLA crystallization in the PLAxPCLy blend. Moreover, the PLA70PCL30 blend gave the highest growth rate of PLA spherulite. Finally, the mechanical property of PLAxPCLy blends indicated that PLA can easily be tuned from rigid to ductile by the addition of PCL.
    In the thord part, blends of PCL with MWNTs were prepared by means of a melt blending method. To cutail the poor compatibility between PCL and MWNTs, the acrylic acid grafted polycaprolactone (PCL-g-AA) and the multihydroxyl functionalized MWNTs (MWNTs-OH) were used as alternatives for the preparation of blends. As the comparison between PCL-g-AA/MWNTs-OH and PLA/MWNTs blends, the former gave much better thermal and mechanical properties than the latter; for example, the initial decomposition temperature was increased by 77°C with the addition of only 5wt%, owing to the formation of ester groups through the reaction between carboxyl groups of PCL-g-AA and hydroxyl groups of MWNTs-OH. Finally, the optimal amount of MWNTs-OH was 5wt% because excess MWNTs–OH caused separation of the organic and inorganic phases and lowering their
    compatibility.

    摘 要 I 誌 謝 VII 目 錄 VIII 第一章 前 言 1 第二章 文獻回顧 5 2.1熱塑性塑膠 5 2.2 分解性高分子 8 2.3 生物分解性高分子 11 2.3.1 生物分解性高分子之特性 11 2.3.2生物分解性高分子之種類 14 2.4聚乳酸 22 2.4.1聚乳酸之組成與特性 22 2.4.2聚乳酸之合成 25 2.5 聚乙烯醇 29 2.5.1 PVA的用途 30 2.5.2 PVA之一般特性 31 2.6. 聚己內酯 32 2.7 奈米碳管 33 2.7.1 奈米碳管結構 33 2.7.2 奈米碳管特性 34 2.7.3 奈米碳管純化 35 2.8相容劑改質原理 36 2.9 生物分解性測定規範 39 第三章 實驗方法與步驟 44 3.1材料 44 3.2實驗儀器 45 3.3樣品製備 47 3.3.1 PLAxPVAy合膠樣品 47 3.3.2 PLAxPCLy合膠樣品 48 3.3.3 PCL-g-AA/MWNTs-OH共混樣品 48 3.4樣品性質檢測 49 3.4.1 PLAxPVAy合膠樣品 49 3.4.2 PLAxPCLy合膠樣品 51 3.4.3 PCL-g-AA/MWNTs-OH共混樣品 53 第四章 結果與討論 57 4.1 PLAxPVAy合膠樣品之特徵 57 4.1.1 PLAxPVAy合膠樣品之扭矩分析 57 4.1.2 PLAxPVAy合膠樣品之FTIR分析 58 4.1.3 PLAxPVAy合膠樣品之熱性能分析 60 4.1.4 PLAxPVAy合膠樣品之WXRD分析 62 4.1.5 PLAxPVAy合膠樣品之POM分析 64 4.1.6 PLAxPVAy合膠樣品之熱穩定性觀察 68 4.2 PLAxPCLy合膠樣品之結晶與性能研究 71 4.2.1 PLAxPCLy合膠樣品之DSC和WAXD分析 71 4.2.2 PLAxPCLy合膠樣品之SEM形態學和力學性能 74 4.2.3 PLAxPCLy合膠樣品之動態力學分析(DMA) 78 4.2.4 PLAxPCLy合膠樣品之表面型態分析 81 4.3 PCL-g-AA/MWNTs-OH共混樣品製備與性質研究 84 4.3.1 PCL-g-AA/MWNTs-OH共混樣品之FTIR分析 84 4.3.2 PCL-g-AA/MWNTs-OH共混樣品之13C NMR分析 91 4.3.3 PCL-g-AA/MWNTs-OH共混樣品之之熱性質分析 93 4.3.4 PCL-g-AA/MWNTs-OH共混樣品之SEM型態分析 97 4.3.5 PCL-g-AA/MWNTs-OH共混樣品之抗張性質分析 99 第五章 結 論 100 參考文獻 102 作者簡介 114 論文著述 115

    1. Hu, Y., Rogunova, M., Topolkaraev, V., Hiltner, A., and Baer, E., Polymer, 44, 5701 (2003).
    2. Dorgan, J., Lehermeier, J., Palade, L., and Cicero, J., Macromolecular Symposia, 175, 55 (2001).
    3. Jacobsen, S., Fritz, H. G., Degée, P. H., Dubois, P. H. and Jérôme, R., Polymer Engineering and Science, 39, 1311 (1999).
    4. Grijpma, D. W., Hofslot, R. V., Super, H., Nijenhuis, A., and Pennings, A. J., Polymer Engineering and Science, 34, 1674 (1994).
    5. Tsuji, H., and Ikada, Y. J., Journal of Applied Polymer Science, 67, 405 (1998).
    6. Martin, O., and Averous, L., Polymer, 42, 6209 (2001).
    7. Drumright, R. E., Gruber, P. R., and Henton, D. E., Advanced Materials, 12, 1841 (2000).
    8. Lunt, J., Polymer Degradation and Stability, 59, 145 (1998).
    9. Kricheldorf, H. R., Berl, M., and Scharnngal, N., Macromolecules, 21, 286 (1998).
    10. Nijenhuis, A. J., Grijpma, D. W., and Pennings, A. J., Macromolecules, 25, 6419 (1993).
    11. Sinclair, R. G., ANTEC, 87, 1214 (1987).
    12. Kricheldorf, H. R., and Kreiser-Saunders, I., Macromolecular Symposia, 103, 85 (1996).
    13. Herdman, R. C., U. S. Government Printing Office, 43-50 (1993).
    14. Gajria, A. M., Davé, V., Gross, R. A. and McCarthy, S. P., Polymer, 37, 437 (1996).
    15. Meinander, K., Niemi, M., Hakola, J. S., and Selin, J. F., Macromolecular Symposia, 123, 147 (1997).
    16. Kasuga, T., Ota, Y., Nogami, M., and Abe, Y., Biomaterials, 22, 19 (2001).
    17. Chen, D., and Sun, B., Materials Science and Engineering, C11, 57 (2000).
    18. Gombotz, W. R., and Pettit, D. K., Bioconjugate Chemistry, 6, 332 (1995).
    19. Leenslag, J. W., Pennings, A. J., Bos, R. R., Rozema, F. R., and Boering, G., Biomaterials, 8, 70 (1987).
    20. Jürgens, C. H., Kricheldorf, H. R., and Saunders,I. K., Biomaterials in surgery, New York: G. Thieme-Verlag, pp.12 (1998).
    21. Lucke, A., Teßmar, J. E., Schnell, G., Schmeer, and Göpferich, A., Biomaterials, 21, 2361 (2000).
    22. Langer, R., Vacanti, J. P., Tissue Engineering Science, 260, 920 (2000).
    23. Hubbell, J., Biomaterials in tissue engineering, Biotechnology (NY ), 13, 565 (1995).
    24. Tsuji, H., and Muramatsu, H., Polymer Degradation and Stability, 71, 403 (2001).
    25. Shuai, X., He, Y., Asakawa, N.,and Inoue, Y., Journal of Applied Polymer Science, 81, 762 (2001).
    26. Tsuji, H., and Muramatsu, H., Journal of Applied Polymer Science, 81, 2151 (2001).
    27. Pluta, M., Galeski, A., Alexandre, M., Paul, M. A. And Dubois, P. J., Journal of Applied Polymer Science, 86, 762 (2002).
    28. Huda, M. S., Drzal, L. T., Mohanty, A. K., and Misra, M., Journal of Computer Science and Technology, 66, 1813 (2006).
    29. Jawalkar, S. S., and Aminabhavi, T. M., Polymer, 47, 8061 (2006).
    30. Zhang, J. H., Zhuang, W., Zhang, Q., Liu, B., Wang, W., Hu, B. X., and Xhen, J., Polymer Composites, 28, 545 (2007).
    31. Wang, N., Yu, J., Chang, P. R., and Ma, X., Carbohydrate Polymers, 71, 109 (2007).
    32. Pitt, C. G., Wang, J., Shah, S. S., Sik, R., and Chignell, C. F., Macromolecules, 26, 159 (1993).
    33. Wu, C. S., Macromolecular Bioscience, 5, 352 (2005).
    34. Park, J. W., Im, S. S., Kim, S. H., and Young, H. K., Polymer Engineering and Science, 40, 2539 (2000).
    35. Nagata, F., Okano, W., Akai, N., and Tsutsumi, N., Journal of Polymer Science Part A: Polymer Chemistry, 36, 1861 (1998).
    36. Park, T. G., Cohen, W., and Langer, R., Macromolecules, 25, 116 (1992).
    37. Wu,C. S., Liao, H. T., Polymer, 46, 10017 (2005).
    38. Alexy, P., Lacík, I. and Šimková, B., Polymer Degradation and Stability, 85, 823 (2004).
    39. Tanaka, T., Academic Press, pp. 693 (2000).
    40. Jang, J., and Lee, D. K., Polymer, 44, 8139 (2003).
    41. Tanigami, T., Hanatani, H., Kazuo, Y., and Matsuzawa, S., European Polymer Journal, 35, 1165 (1999).
    42. Pavol, A., and Darina, K., Polymer Degradation and Stability, 78, 413 (2002).
    43. Hung, S. J., Edelman, P. G., Scott, G., and Gilead, D., Degradable polymers: principles and applications. London: Chapman & Hall, (1995).
    44. Lin, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Shon, Y. S., Lee, T. R., Colbert, D. T., and Smalley, R. E., Science, 280, 1253 (1998).
    45. Saeed, K., and Park, S. Y., Journal of Applied Polymer Science, 104, 1957 (2007).
    46. Kitano, H., Tachimoto, K., Gemmei, I. M., Tsubaki, N., Macromolecular Chemistry and Physics, 207, 812 (2006).
    47. Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., Guo, X., and Du, Z., Journal of Physical Chemistry B, 107, 3712 (2003).
    48. Zhao, B., Hu, H., and Haddon, R. C., Advanced Functional Materials, 14, 71 (2004).
    49. Zeng, H., Gao, C., and Yan, D., Advanced Functional Materials, 16, 812 (2006).
    50. Chrissafis, K., Antoniadis, G., Paraskevopoulos, K.M., Vassiliou, A., and Bikiaris, D.N., Journal of Computer Science and Technology, 67, 2165 (2007).
    51. Ryding, S. O., Environmental Management Handbook, Amsterdam, The Netherlands, 5, 55 (1994).
    52. Brune, D., The Global Environment-Science Technology and Management, 72, 3, 1157 (1997).
    53. 姜燮堂, 分解性塑膠, 交銀產業調查與技術季刊, 137, 4 (2001)。
    54. Hocking, P. J., Macrohol, R., Journal of Chemical Physics, C32 (1), 35 (1992).
    55. Scott, G., and Gilead, D., Degradable Polymers- Principles Applications, Chapman Hall, London, 217 (1955).
    56. Loucks, J., Polymer Degradation and Stability, 59, 245 (1998).
    57. Steinbuchel, A., FEMS Microbiology Reviews, 217 (1992).
    58. Ho, K. G., and Pometto, A. L., Journal of Environmental Polymer Degradation, 76, 101 (1999).
    59. Felton, G., Farley, F. F., and Hixon, R. M., Chemistry of Cereal Proteins, 15 (1938).
    60. Rutenberg, M. W., Solarek, D. B., Tapioca: Chemistry and Technology, Academic Press, New York, pp. 349 (1984).
    61. Solarek, D. B., Modified Tapioca: Properties and Uses, Boca Raton, CKC Press, Florida, 97 (1986).
    62. Radley, J. A., Tapioca Production Technology, Applied Science Publishers, London, 22 (1976).
    63. Calson, D., Nie, L., and Barayan, R., Journal of Applied Polymer Science, 72, 477 (1999).
    64. Higgins, N. A., U.S.Patent 2676945 (1954).
    65. Leenslag, J. W., University of Groningen, Amsterdam, The Netherlands (1982).
    66. Gopferrich, A., European Journal of Pharmaceutics and Biopharmaceutics, 42, 1 (1996).
    67. Muller, E., Allgower, M., Schneider, R. And Willlenegger, H., Manual of Internal Fixation, Verlag, Berlin (1979).
    68. Schaztker, J., and Tile, M., The Rationale of Operative Fracture Care, Verlag, Berlin (1987).
    69. Cao, Y. L., Vacanti, C. A., Upton, J., Plastic and Reconstructive Surgery, 100, 297 (1997).
    70. Mansbridge, J., Liu, K., and Patch, R., Tissue Engineering, 4, 403 (1998).
    71. Gilding, D. K., and Reed, A. M., Polymer, 22, 494 (1981).
    72. Holten, C., Lactic acid Weinheim, Verlag Chemie, 221,31(1971).
    73. Vert, M., Chabot, F., Leray, J., and Christel, P., Macromolecular Chemistry and Physics, 5, 30 (1981).
    74. Nakamura, T., Hitomi, S., Watanabe, S., Shimizu, Y., Jameshidi, K., Hyon, S. H., and Ikada, Y., Biomed Master, 23, 1115 (1989).
    75. Perego, G., Cella, G. D., Bastiol, C., Journal of Applied Polymer Science, 59, 37 (1996).
    76. Sinclair, R. G. J. M. S., Pure and Applied Chemistry, A33, 585 (1996).
    77. Auras, R., Kale, G., and Singh, S. P., Global Plastics Environmental Conference (2006).
    78. Tabata, Y., Lkada, Y., Biomedical Materials Research, 22, 837 (1989).
    79. Vert, M., Biomaterials, 15, 1209 (1994).
    80. Park, T. G., Journal of Controlled Release, 30, 161 (1994).
    81. Raghuvanshi, R. S., International Journal of Pharmaceutics, 93, 1 (1993).
    82. Hutmacher, D., The international journal of oral&maxillofacial implants, 11, 667 (1996).
    83. Hyon, S., Jamshidi, K., Lkada, Y., Biomaterials, 18, 1503 (1997).
    84. Hiltunen, K., Seppala, J. V., and Harkonen, M. Macromolecules, 30, 373 (1997).
    85. Rashkov, I., Manolova, N., Li, S. M., Espartero, J. L. And Vert, M., Macromolecules, 29, 50 (1996).
    86. Chen, X. H., McCarthy, S. P., and Gross, R. A., Macromolecules, 30, 4295 (1997).
    87. Maglio, G., Migliozzi, A., and Palumbo, R., Polymer, 44, 369 (2003).
    88. Chon, D., Hotovely-Salomon, A., Polymer, 46, 2068 (2005).
    89. Choi, N. S., Kim, C. H., Cho, K. Y., and Park, J. K., Journal of Applied Polymer Science, 86, 1892 (2002).
    90. Na, Y. H., He, Y., Shuai, X., Kikkawa, Y., Doi, Y., and Inoue, Y., Biomacromolecules, 3, 1179 (2002).
    91. Blümm, E., and Owen, A., Polymer, 36, 4077 (1995).
    92. Zhang, L. L., Deng, X. M., Zhao, S. J., and Huang, Z. T., Journal of Applied Polymer Science, 65, 1849 (1997).
    93. Focarete, M. L., Scandola, M., Dobrzynski, P., and Kowalczuk, M., Macromolecules, 35, 8472 (2002).
    94. Zhang, L. L., Xiong, C. D., and Deng, X. M., Polymer, 37, 235 (1996).
    95. Nijenhuis, A. J., Colstee, E., Grijpma, D. W. and Pennings, A. J., Polymer, 37, 5849 (1996).
    96. Wang, L., Ma, W., Gross, R. A., and McCarthy, S. P., Polymer Degradation and Stability, 59, 161 (1998).
    97. Dell’Erba, R., Groeninckx, G., Maglio, G., Malinconico, M., and Migliozzi, A., Polymer, 42, 7831 (2001).
    98. Chen, C. C., Chueh, J. Y., Tseng, H., Huang, H. M., and Lee, S. Y., Biomaterials, 24, 2297 (2003).
    99. Koyama, N., and Doi, Y., Polymer, 38, 1589 (1997).
    100. Ohkoshi, I., Abe, H., and Doi, Y., Polymer, 41, 5985 (2000).
    101. Park, J. W., Im, S. S., Journal of Polymer Science Part B: Polymer Physics, 40, 1931 (2002).
    102. Park, J. W., Im, S. S., Journal of Applied Polymer Science, 86, 647 (2002).
    103. Sheth, M., Kumar, A., Davé, V., Gross, R. A., McCarthy, S. P., Journal of Applied Polymer Science, 66, 1495 (1997).
    104. Hu, Y., Hu, Y. S., Topolkaraev, V., Hiltner, A., and Baer, E., Polymer, 44, 5681 (2003).
    105. Hu, Y., Hu, Y. S., Topolkaraev, V., Hiltner, A., and Baer, E., Polymer, 44, 5711 (2003).
    106. Kulinski, Z., Piorkowska, E., Polymer, 46, 10290 (2005).
    107. Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., and Wintermantel, E., Journal of Applied Polymer Science, 90, 1731 (2003).
    108. Labrecque, L. V., Kumar, R. A., Davé, V., Gross, R. A., and McCarthy, S. P., Journal of Applied Polymer Science, 66, 1507 (1997).
    109. Ljungberg, N., Wesslén, B., Journal of Applied Polymer Science, 86, 1227 (2002).
    110. Ljungberg, N., Wesslén, B., Polymer, 44, 7679 (2003).
    111. Ljungberg, N., Andersson, T., and Wesslén, B., Journal of Applied Polymer Science, 88, 3239 (2003).
    112. Ljungberg, N., Wesslén, B., Journal of Applied Polymer Science, 94, 2140 (2004).
    113. Ljungberg, N., and Wesslén, B., Biomacromolecules, 6, 1789 (2005).
    114. Zhang, J. F., and Sun, X., Polymer International, 53, 716 (2004).
    115. DeSantis, P., and Kovacs, A. J., Biopolymer, 6, 299 (1968).
    116. Eling, B., Gogolewski, S., and Pennings, A. J., Polymer, 23, 1587 (1982).
    117. Vink, E. T. H., Rabago, K. R., Glassner, D. A., and Gruber, P. R., Polymer Degradation and Stability, 80, 43 (2003).
    118. Nakafuku, C., and Sakoda, M., Polymer Journal, 25, 909 (1993).
    119. Yang, J. M., Chen, H. L., You, J. W., and Hwang, J. C., Polymer Journal, 29, 657 (1997).
    120. Baughman, R. H., Zakhidov, A. A., and De Heer, W. A., Science, C, 297 (2002).
    121. Tsang, S. C., Harris, P. J. F., and Green, M. L. H. Nature, 362, 520 (1993).
    122. Tsang, C., Chen, Y. K., Harris, P. J. F., and Green, M. L. H., Nature, 372, 159 (1995).
    123. Satishkumar, B. C., Govindaraj, A. J., Mofokeng, G. N., Subbanna, Rao, C. N. R., Journal of Applied Polymer Science, 29, 4925 (1996).
    124. Lee, Y. H., Park, Y. S., Choi, Y. C., Kim, K. S., Chung, D. C., Bae, D. J., An, K. H., Lim, S. C., and Zhu, X. Y., Carbon, 39, 655 (2001).
    125. Bonard, J. M., Stora, T., Salvetat, J. P., Maier, F., Stöckli, T., Duschl, C., Forro, L., De Heer, W. A., and Chatelain, A., Advanced Materials, 9, 827 (1997).
    126. Bandow, S., Rao, A. M., Williams, K. A., Thess, A., Smalley, R. E., and Eklund, P. C., Journal of Chemical Physics, 101, 8839 (1997).
    127. Shelimov, K. B., Rinat, R. O., Rinzler, A. G., Huffmann, C. B., and Samalley, R. E., Chemical Physics Letters, 282, 429 (1998).
    128. Morgan, A. B., Gilman, J. W., Harris, R. H., Jackson, C. L., Wilkie, C. H., and Zhu, J., Polymeric Materials Science and Engineering, 83, 53 (2000).
    129. Xanthos and S. S. Dagli, Polymer Engineering and Science, 31, 929 (1991).
    130. Heikens, D., and Barentsen, W., Polymer, 18, 69 (1977).
    131. Barentsen, W., and Heikens, D., Polymer, 14, 579 (1973).
    132. Barentsen, W., Heikens, D., and Piet, P., Polymer, 15, 119 (1974).
    133. Heikens, D., Hoen, N., Barentsen, W., Piet, P. and Ladan, H., Journal of Polymer Science, 62, 309 (1978).
    134. Ide, F., Hasegawa, A., Journal of Applied Polymer Science, 18, 963 (1974).
    135. Endo, S., Min, K., White, J. L., and Kyu, T., Polymer Engineering and Science, 26, 45(1986).
    136. Yoshida, M., Ma, J. J., Min, K., White, J. L., and Quirk, R. P., Polymer Engineering and Science, 30, 30 (1990).
    137. Jiang, R., Quirk, R. P., White, J. L., and Min, K., Polymer Engineering and Science, 31, 1545 (1991).
    138. Setua, D. K., and White, J. L., Polymer Engineering and Science, 31, 1742 (1991).
    139. ASTM D5210-92; D5271-93; D5511-94; D5522-94a; D5526-94; D5951-96; D5998-96; D6002-96; D6003-96; D5338-98e1; D6340-98; D6691-01 ; D6692-01, (2000).
    140. ISODIS 14851 (1999); ISODIS 14852 (1999); ISODIS 14855 (1999).
    141. Fischer, E. W., Sterezel, H. J., and Webner, G., Colloid and Polymer Science, 251, 980 (1999).
    142. Zhang, L., Goh, S. H., and Lee, S.Y., Polymer, 39, 4841 (1998).
    143. Hoogsteen, W., Postema, A. R., Pennings, A. J., and Brinke, G. T., Macromolecules, 23, 634 (1990).
    144. Brizzolara, D., Cantow, H. J., Diederichs, K., Keller, E., and Domb, A. J., Macromolecules, 29, 191 (1996).
    145. Peng, Z., and Kong, L. X., Polymer Degradation and Stability, 92, 1061 (2007).
    146. Bull, T.G. F., Journals of the American Physical Society, 1, 123 (1956).
    147. Agrawal, C. M., Ray, R. B., and Biomed, J., Journal of Materials Research, 55, 141 (2001).
    148. Bellayer, S., Gilman, J. W., Eidelman, N., Bourbigot, S., Flambard, X., Fox, D. M., Long, H. C. D., and Trulove, P. C., Advanced Functional Materials, 15, 910 (2005).
    149. Chiu, W.M., and Chang, Y.A., Journal of Applied Polymer Science, 107, 1655 (2008).
    150. Huang, H. M., Liu, I. C., Chang, C. H., Tsai, H. H., Hsu, C. H., and Tsiang R. C. C., Journal of Polymer Science Part A: Polymer Chemistry, 42, 5802 (2004).
    151. Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A., and Dekker, C., Nano Letters, 3, 727 (2003).
    152. Chen, S., Wu, G., Liu, Y., and Long, D., Macromolecules, 39, 330 (2006).
    153. Wu, C. S., Journal of Applied Polymer Science, 89, 2888 (2003).
    154. Wu, C. S., Journal of Applied Polymer Science, 92, 1749 (2004).
    155. Wu, C. S., Polymer, 46, 147 (2005).
    156. Kesel, C. D., Lefevre, C., Nagy, J. B., David, C., Polymer, 40, 1969 (1999).
    157. Xu, Y., Gao, C., Kong, H., Yan, D., Jin, Y. Z., and Watts, P. C. P., Macromolecular, 37, 8846 (2004).
    158. Kashiwagi, T., Grulke, E., Hilding, J., Harris, R., Awad, W., and Douglas, J., Macromolecular Rapid Communications, 23, 761 (2002).
    159. Bom, D., Andrews, R., Jacques, D., Anthony, J., Chen, B., Meier, M. S., and Selegue, J. P., Nano Letters, 2, 615 (2002).

    無法下載圖示 全文公開日期 2014/04/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE