簡易檢索 / 詳目顯示

研究生: 嚴晧耘
Hao-Yun Yen
論文名稱: 電動摩托車後搖臂結構輕量化設計與分析
Design and Analysis of Lightweight Rear Swing-Arm Structure for Electric Motorcycles
指導教授: 張燕玲
Yen-Ling Chung
口試委員: 甯攸威
紀翔和
張燕玲
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 66
中文關鍵詞: 電動摩托車後搖臂輕量化結構分析拓樸分析有限元素法分析
外文關鍵詞: Electric Motorcycles, Rear Swing-Arm, Lightweight, Structure Analysis, Topology Analysis, FEM Analysis
相關次數: 點閱:170下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目標是對一個既有的電動摩托車後搖臂結構,在不降低原本性能或不低於容許範圍內的情況下,進行輕量化設計。執行流程為先對原始後搖臂結構進行各項數據收集,其中包括標準工況分析、剛性分析、整車強度分析、單位力分析、及疲勞分析。接著對結構弱處進行補強或重新設計,以提升後搖臂結構之性能,才有餘裕將低應力區域部件進行減重,以提升結構之用料效率。
    本文有詳細說明各項分析之設定、方法、原因、及結果。其中標準工況分析又分為一般使用工況及嚴苛使用工況,一般使用工況是假設用戶正常操駕摩托車之情況;嚴苛使用工況則假定為用戶做極限操駕之情況。剛性分析包含扭轉、彎曲、以及側向。整車強度分析將針對後輪落地工況進行講解。疲勞分析將對三種路面進行分析驗證,分別為連續凸起路面、連續凹陷路面、及連續交錯路面。值得一提的是,隨著輕量化設計的進行,標準工況及疲勞分析都將經過多體動力學重新計算,以獲得新的動態節點力,並重新進行分析驗證,以確保後搖臂輕量化設計方案之安全可靠性。
    除了考慮到結構分析,本研究也將著重考慮零件製造的可行性與經濟性,也因此多次更改設計並進行多次分析,而得到最後的後搖臂輕量化設計方案。


    The main objective of this paper is to conduct a lightweight design for an existing electric motorcycle swingarm structure without compromising its original performance or falling below acceptable limits. The execution process involves collecting various data on the original swing-arm structure, including standard operating condition analysis, rigidity analysis, overall vehicle strength analysis, unit force analysis, and fatigue analysis. The structure's weaknesses are then reinforced or redesigned to enhance the performance of the swing-arm structure, allowing for weight reduction in low-stress areas to improve material efficiency.
    The paper provides detailed explanations of the settings, methods, reasons, and results for each analysis. The standard operating condition analysis is further divided into normal usage conditions and severe usage conditions. Normal usage conditions assume the motorcycle is operated under typical circumstances, while severe usage conditions consider extreme driving scenarios. Rigidity analysis includes torsion, bending, and lateral forces. The overall vehicle strength analysis focuses on the rear-wheel landing condition. Fatigue analysis verifies the performance on three types of road surfaces: continuous convex, continuous concave, and continuous alternating surfaces. It is worth mentioning that as the lightweight design progresses, both the standard operating condition and fatigue analysis undergo multi-body dynamics recalculations to obtain new dynamic nodal forces. These forces are then reanalyzed to ensure the safety and reliability of the lightweight swing-arm design.
    In addition to structural analysis, this research also emphasizes the feasibility and cost-effectiveness of component manufacturing. Therefore, multiple design iterations and analyses were conducted to achieve the final lightweight swing-arm design solution.

    第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 研究方法與流程 7 第二章 原始後搖臂結構資訊 9 2.1 原始後搖臂部件以及對應之参數資訊 9 2.2 原始後搖臂結構之標準工況分析結果 15 第三章 後搖臂結構補強設計 18 3.1 部件S8補強設計 18 3.2 部件S1外側做導角補強設計 23 第四章 後搖臂結構拓樸最佳化分析 25 4.1 後搖臂最佳化分析流程 25 4.2 後搖臂最佳化分析結果與討論 30 第五章 後搖臂輕量化設計方案 32 5.1 輕量化後搖臂結構介紹 32 5.2 輕量化後搖臂結構標準工況分析 37 5.3 輕量化後搖臂標準工況分析總結 40 第六章 輕量化後搖臂結構剛性分析 41 6.1 輕量化後搖臂結構剛性分析設定 41 6.2 輕量化後搖臂結構剛性分析結果彙整 44 6.2.1 輕量化後搖臂結構剛性分析結果與討論 44 6.3 輕量化後搖臂結構剛性分析總結 48 第七章 輕量化電動摩托車整車強度分析 49 7.1 後輪落地工況 49 7.2 輕量化結構整車強度分析結論與討論 50 第八章 後搖臂輕量化結構疲勞損傷分析 54 8.1 輕量化後搖臂結構疲勞分析目的與方法 55 8.2 輕量化後搖臂結構疲勞損傷分析結果 56 8.2.1 輕量化後搖臂結構疲勞損傷結論與討論 57 第九章 結論與建議 59 9.1 結論 59 9.2 建議 59 附錄A 後搖臂比較彙整 60 A.1扭轉剛性分析 60 A.2側向剛性分析 64 參考文獻 65

    1. 廖紘毅, 汽車後搖臂管液壓成形灰關聯分析. 2012, 國立虎尾科技大學,創意工程與精密科技研究所. p. 73.
    2. 沈晉輝, 汽車輕量化車體結構用6000系鋁合金之研究. 國立中央大學,機械工程研究所. p. 169.
    3. 劉明遠, 電動車車體結構輕量化及疲勞壽命之研究. 2013, 國立屏東科技大學,車輛工程系所. p. 130.
    4. 莊其霖, 人力與電力串聯式混合動力的輕量化電動(輔助)自行車. 2021, 高苑科技大學,機械與自動化工程研究所. p. 79.
    5. 陳柏彣, 電動車動力系統傳動箱體結構之優化設計. 2016, 國立臺灣大學,機械工程學研究所. p. 120.
    6. 郭昱鼎, 電動摩托車車架力學行為及疲勞損傷分析. 2022, 國立臺灣科技大學,營建工程系. p. 162.
    7. 陳水斌, 電動摩托車結構設計與實作. 2017, 國立屏東科技大學,車輛工程系所. p. 142.
    8. 劉英偉, 結構輕量化最佳設計之分析方法. 1992, 國立中興大學,應用數學研究所. p. 135.
    9. 卓進興, 機車車體結構分析與最佳化設計之研究. 2003, 大葉大學,機械工程學系碩士班. p. 73.
    10. 高宗華, 機車車架結構之剛性分析與測試. 2010, 國立屏東科技大學,車輛工程系所. p. 118.
    11. 陳暐曄, 機車車架與後輪懸吊系統之應力分析. 2010, 義守大學,機械與自動化工程學系碩士班. p. 71.
    12. Roe, G. and T. Thorpe, The influence of frame structure on the dynamics of motorcycle stability. SAE transactions, 1989,p. 1319-1330.
    13. Wang J. et al. ,The optimization design and analysis of motorcycle frame structure. Applied Mechanics and Materials. 2012. Trans Tech Publications.
    14. Tripathi, S. and R. Ambikesh, Design and FEA of Motorcycle Frame Using Carbon/Flax Hybrid Composite as a light weight substitute to steel. International Research Journal of Engineering and Technology. 2021.
    15. Tripathi, S. and R. Ambikesh, Optimization and FEA of motorcycle frame using light weight composite material for weight reduction. American Institute of Physics Conference Proceedings. 2022. AIP Publishing Limited Liability Company.
    16. Karthick, M. et al., Structural analysis of motorcycle spokes design using finite element analysis with alloy materials. Materials Today, Proceedings, 2023.
    17. Rege, S. et al., Design and analysis of frame for electric motorcycle. International Journal of Innovative Research In Science, Engineering and Technology, 2017. 6(10).
    18. Baryshnikova, O.O. and D.V. Strugovshchikov, Methodology for effective design of motorcycle structures. International Journal of Mechanical Engineering and Robotics Research, 2021. 10(7): p. 400-405.
    19. Gowda, D.V. et al., Optimization of motorcycle pitch with non linear control. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). 2016. IEEE.
    20. Matsumoto, M., J. Abe, and J. Oda, A structural optimization for configuration design of the motorcycle Body. SAE Technical Paper. SAE International Scholary Journals. 1991
    21. Manikandan, C.B. et al., Weight reduction of motorcycle frame by topology optimization. Journal of Achievements in Materials and Manufacturing Engineering, 2018. 91(2): p. 67-77.

    QR CODE