簡易檢索 / 詳目顯示

研究生: 邱昶瀚
CHANG-HAN CHIOU
論文名稱: 陡峭岩坡之傾倒機制探討
Toppling Mechanism of Steep Rock Slope
指導教授: 陳志南
Chee-Nan Chen
口試委員: 林志森
none
廖瑞堂
none
陳堯中
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 152
中文關鍵詞: 邊坡穩定陡峭岩坡傾倒岩坡角度節理組數節理勁度比岩性
外文關鍵詞: UDEC, steep rock slope, toppling, slope angle, numbers of joint set, stiffness of joints, rock strength
相關次數: 點閱:425下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

邊坡穩定所需考量的因素及破壞機制,應依不同地形與地質構造而有所不同。因此建立陡峭岩坡之適當分析模式,進行相關之定性與定量分析,瞭解其傾倒作用機制是本研究之目的。本研究利用UDEC軟體進行數值模式分析,重點在探討岩坡傾倒之漸進式破壞歷程,包含各歷程之應力調整、節理面錯動、張力裂縫及塑性區的發展等等,本研究之關注重點。研究結果顯示,陡峭岩坡之力學行為會受岩坡角度、節理組數、節理勁度比、岩性(硬岩、軟岩)等等影響,由漸進式破壞歷程之應力及變形相對大小及分佈,可以提供陡峭岩坡整治及監測布設之參考。


The influential factors and failure mechanisms of steep rock slope are dependant on the topography and geological structure of slope. Therefore, how to establish appropriate analytical model and how to analyze the qualitative and quantitative characterization related to steep rock slope are the purpose of this study.
Numerical code UDEC was used to build numerical model and perform analysis in the study. The investigation focused on the progressive destruction of toppling of steep slope. Important issues include stress redistribution, slip dislocations of joints, tension cracks and the development of the plastic zone.
The analytical results show that the mechanical behavior of steep slope is influenced with slope angle, numbers of joint set, stiffness of joints, rock strength (hard rock, soft rock). Base in the region of equal-stress contour, the magnitude of deformation and plastic zone of different progressive periods, some suggestions are proposed for remediation and monitoring of steep rock slope.

論文摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1前言 1.2研究動機與目的 1.3研究內容與流程 第二章 文獻回顧 2.1傾倒破壞之類型 2.1.1逆向坡之傾倒種類 2.1.2次要傾倒之傾倒種類(secondary toppling) 2.2一塊體傾倒之基本理論 2.3傾倒破壞機制 2.4傾倒破壞之相關研究 2.4.1物理試驗(physical models) 2.4.2限平衡法(limit equilibrium method) 2.5岩石材料之力學行為 2.5.1均質岩石材料之力學行為 2.5.2節理岩石材料之力學行為 2.5.3節理勁度之影響 2.5.4節理組數對岩體強度之影響 第三章 分析方法說明 3.1 UDEC程式的發展與理論背景 3.2 UDEC之行為模式 3.2.1塊體之組合律模式 3.2.2節理之組合律模式 3.3基本術語定義 3.4分析流程簡介 3.4.1分析架構及輸入指令說明 3.4.2實際分析步驟 3.4.3符號說明 3.5本研究利用UDEC建置之二維數值模式 3.5.1數值分析模式 3.5.2數值分析網格之建立 3.6 UDEC分析須輸入之參數 3.6.1完整岩石參數 3.6.2節理參數 第四章 傾倒破壞模式建置與分析 4.1利用不連續體軟體UDEC進行岩坡之相關研究 4.2本研究利用UDEC進行案例之數值模擬與印證 4.2.1本研究與USC = 80MPa對比印證(硬岩) 4.2.2本研究與USC = 10MPa對比印證(軟岩) 4.3數值分析運算時階(Cycle) 4.3.1撓曲傾倒之漸進式破壞歷程 4.4.五個漸進式歷程之撓曲傾倒應力變化探討 4.4.1漸進式歷程之撓曲傾倒坡趾應力變化探討 4.5撓曲傾倒之位移變化探討 4.5.1撓曲傾倒之坡面位移變化探討 4.5.2撓曲傾倒之地面位移變化探討 4.5.3撓曲傾倒之坡面後與地面下位移變化探討 4.6撓曲傾倒對坡面及地表之錯動影響 4.6.1撓曲傾倒對坡面錯動之影響 4.6.2撓曲傾倒對地表坡頂後方、坡趾前方錯動之影響 4.7撓曲傾倒之撓曲面變化 4.8不同坡角構造影響傾倒破壞之行為探討 4.8.1節理勁度比對數值分析之問題探討 4.8.2不同坡角影響之坡面位移變化 4.8.3不同坡角影響之坡面錯動 4.8.4不同坡角影響之撓曲面變化 第五章 兩組節理之陡峭岩坡傾倒與滑動探討 5.1軟岩岩坡之坡角變化對坡面位移之探討 5.1.1坡角45°與兩組規則節理之坡面位移探討 5.1.2坡角60°與兩組規則節理之坡面位移探討 5.1.3坡角75°與兩組規則節理之坡面位移探討 5.1.4坡角90°與兩組規則節理之坡面位移探討 5.2 軟岩與硬岩在不同坡角變化之坡面位移比較 5.2.1軟岩與硬岩在坡角45°之坡面位移比較 5.2.2軟岩與硬岩在坡角60°之坡面位移比較 5.2.3軟岩與硬岩在坡角75°之坡面位移比較 5.2.4軟岩與硬岩在坡角90°之坡面位移比較 第六章 結論與建議 6.1結論 6.2建議 參考文獻

1.Adhikary, D.P., Dyskin, A.V., Jewell, R.J., “A study of the mechanism of flexural toppling failure of rock slopes,” Rock Mechanics and Rock Engnineering, 30 (2), pp. 75-93, (1997).
2.Alzo’ubi, A.K., Martin, C.D., Cruden, D.M., “Influence of tensile strength on toppling failure in centrifuge tests,” International Journal of Rock Mechanics & Mining Sciences, 47, pp. 974-982, (2010).
3.Bandis, S., Lumsden, A.C. and Barton, N.R., “Foundamentals of Rock Joints Deformation.” International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstract, 20 (6), pp. 249-268, (1983).
4.Barton, N.R., Bandis, S. and Bakhtar, K. “Strength deformation and conductivity coupling of rock joints,” International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstract, 22, pp. 121-140, (1985).
5.Duncan, C.W., “Foundations on Rock,” Chap.3, pp. 43~76, E&FNSPON, (1992).
6.Goodman, R.E., “The Deformability of Joints Deformation of the In-Situ Modulus of Deformation of Rock,” ASTM, STP 477, pp. 174-196, (1970).
7.Goodman, R. E. “Introduction to Rock Mechanics,” 2nd Ed., Chap. 3, pp. 55~99, John Wiley&Sons, (1989).
8.Goodman, R. E. “Introduction to Rock Mechanics,” 2nd Ed., Chap. 6, pp. 101~140, John Wiley&Sons, (1989).
9.Goodman, R. E. “Introduction to Rock Mechanics,” 2nd Ed., Chap. 8, pp.293~339, John Wiley&Sons, (1989).
10.Goodman, R.E., and Kieffer, D.S., “Behavior of Rock in Slope,”J Geotechnical Eng (ASCE), 126 (8), pp. 675-684, (2000).
11.Hoek, E., and Bray, J. W., “Rock slope engineering,” 3rd Ed., Inst. of Mining and and Metallurgy, London, (1981).
12.Hoek, E. & Brown, E.T., “Underground Excavation in Rock,” Revised First Ed., pp.87-182, (1982).
13.Itasca Consulting Group. UDEC (Universal Distinct Element Code) Version 3.0. Minneapolis, MN, (1997).
14.Jaeger, J.C., “Shear failure of anisotropic rock,” Geo. Mag., 97, pp. 65-72, (1960).
15.Kimber, O.G., Allison, R.J., and Cox, N.J., “Mechanisms of failure and slope development in rock masses,” Trans. Inst. Br. Geogr., NS 23, pp. 353-370, (1998).
16.Kulitilake, P.H., Ucpirti, S.W., Wang, H.S., Radberg, G. Stephansson, O.,” Use of the Distinct Element Method to Perform Stress Analysis in Rock with Non-persistent Joints and to Study the Effect of Joint Geometry Parameters on the Strength and Deformability of Rock Masses,” Rock Mechanics and Rock Engineering 25(4), pp. 253-274, (1992).
17.Lama, R.D. and Vutukuri V.S., “Hand Book on Mechanical Properties of Rock,” Trans Tech Publications, Germany (1978).
18.Lambe, T.W., and Marr, W.A., “Stress Path Method: Second Edition,” Journal of the Geotechnical Engineering Division, ASCE, Vol.105, No. GT6, pp.727-738, (1979).
19.Nichol, S.L., Hungr, O., Evans, S.G., “Large-scale brittle and ductile toppling of rock slopes,” Canadian Geotechnical Journal, 39, pp. 773-788, (2002).
20.Sjoberg, J., “Analysis of large scale rock slopes,” Doctoral thesis, Department of Civil and Mining Engineering, Lulea University of Technology, Sweden, (1999).
21.Varnes, D.J., “Slope Movement Types and Processes,” Landslide analysis and control, edited by R.L. Schuster and R.J. Krizek. National Academy of Sciences, Washington DC, pp. 11-33, (1978).
22.Voight, B. & Pariseau, W.G., “Rockslides and Avalanches An Introduction,” A contribution to Rockslides and Avalanches 1 Natural Phenomena, ed., pp.1-67, (1978).
23.Yoshinaka, R., Yamabe, T., “Joint stiffness and the Deformation behavior of Discontinuous Rock,” Int.J.Rock. Mech.Min.Sci & Geomech.Abstr, 23 (1), pp. 19-28, (1986).
24.Zhang, J. H., Chen, Z. Y.,Wang, X. G., Han, L. B., “Stability of a toppling slope,” In: Proc., Int. Conference Centrifuge 98, vol. 1, Balkema, Rotterdam, pp. 621-626, (1998).
25.方韻喬,「黏質邊坡與砂值邊坡之坡地建築力學行為探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2010)。
26.林煒僑,「順向坡與斜交坡之降挖機制探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2002)。
27.郭俊河,「順向坡開發之工程穩定性探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2004)。
28.張嘉興,「岩坡穩定之數值分析探討-以溪阿公路岩坡為例」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2004)。
29.陳崇華,「台十一線海岸公路邊坡崩塌災害分析」,碩士論文,國立東華大學自然資源管理研究所,花蓮,(2004)。
30.陳譽中,「邊坡滑動評估方法探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2005)。
31.陳俐穎,「節理分佈與傾角變化對基礎底面與其下方岩盤之應力與變形探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2010)。
32.鄭富書、朱家德、黃燦輝,「台灣一些軟弱岩石的工程性質」,岩盤工程研討會,第259-267頁,中壢中央大學,(1994)。

QR CODE