簡易檢索 / 詳目顯示

研究生: 林鴻彰
Hong-Jhang Lin
論文名稱: 不飽和土壤邊坡基質吸力與位移之監測及邊坡穩定分析
Matric Suction and Displacement Monitoring and Stability Analysis of Unsaturated Soil Slope
指導教授: 林宏達
Horn-Da Lin
口試委員: 王建智
none
褚炳麟
none
陳堯中
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 150
中文關鍵詞: 不飽和土壤基質吸力張力計邊坡穩定分析
外文關鍵詞: unsaturated soil, matric suction, tensiometer, stability analysis
相關次數: 點閱:268下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對一個實際邊坡案例進行位移、地下水位及基質吸力之實地監測,並進一步探討監測結果與降雨之關係。本研究也應用STABLE Win程式分析現地淺層土壤基質吸力變化對不飽和土壤邊坡穩定性之影響。監測結果顯示,降雨入滲易導致崩積土層與頁岩泡水軟化,剪力強度隨之降低而產生滑動面。整體而言,樁中傾斜管位移量遠小於土、岩層傾斜管,顯示目前擋土支撐系統應已發揮抑制變形之功能。地下水位觀測結果顯示,本區邊坡地下水位均低於潛在滑動面位置,因此滑動面目前並無長期浸水情形。邊坡淺層土壤一般位於地下水位之上,處於不飽和狀態。基質吸力監測結果顯示,地表連日乾旱之最大吸力達83kPa接近張力計量測上限值90kPa,而連續降雨後地表吸力迅速降為0kPa。現地邊坡常處於乾濕現象交互作用下,土壤吸力與飽和度成反比關係,吸力變化幅度由大到小依序為0m、0.3m、0.5m、1m。基值吸力會隨著降雨入滲而降低或消失,造成傾斜管最大位移量發生於孔口處,此監測結果與程式分析趨勢相當符合。


    The purpose of this research is to monitor the slope displacement 、groundwater level, and matric suction. The results are then used to study the influence by rainfall infiltration. This study also uses program STABLE Win to analyze the effect on the unsaturated soil slope stability due to soil matric suction changes. The monitoring results illustrate that rainfall infiltration can soften the colluvium and shale when immersed in water, resulting in the reduction of shear strength and the development of potential slip surfaces. In general, displacements measured along the inclinometer installed inside the retaining pile are significantly less than displacements measured in soils and rocks behind the wall. This finding shows that the retailing wall system works well in controlling the deformation. The results of groundwater measurement show that the slide surface is free of long term soaking because the monitored groundwater level remains below the slide surface at all times. In general, shallow soil in the slope is unsaturated. The maximum matric suction of 83 kPa has been recorded near the surface when the region does not get any rainfall for a prolonged period. This value is close to the tensiometer limiting value 90 kPa. After heavy rainfall surface soil’s suction falls quickly to 0 kPa. The increase of matric suction is consistent with the decrease in the degree of saturation under drying condition. The decrease of matric suction is also consistent with the increase in the degree of saturation under wetting condition. The amount of suction changes exhibits a decreasing trend as the depth increases from 0 to 1m. Matric suction would vanish after consistent rainfall and cause the maximum displace to occur at the top of the inclinometer near the ground surface. The analytical results agrees with the behavior observed from field monitoring.

    中 文 摘 要I 英 文 摘 要II 誌 謝III 總目錄IV 表目錄VI 圖目錄VII 第一章緒論1 1.1研究動機與目的1 1.2研究內容與流程2 第二章文獻回顧4 2.1不飽和土壤之特性4 2.1.1不飽和土壤之組構4 2.1.2土壤吸力理論6 2.1.3土壤水份特性曲線11 2.2不飽和土壤邊坡14 2.2.1不飽和土壤邊坡之破壞機制14 2.2.2不飽和邊坡暴雨入滲深度推估17 2.3不飽和土壤邊坡之監測18 2.3.1水文監測18 2.3.2位移監測22 2.3.3應力監測31 2.3.4基質吸力監測34 2.3.5傾斜管量測結果判讀37 2.4邊坡穩定分析理論與方法39 2.4.1極限平衡法與分析程式簡介40 2.4.2極限平衡法的優點與限制41 第三章土層狀況及邊坡監測案例概述43 3.1基地及地質描述43 3.1.1地理位置43 3.1.2地質概況45 3.1.3地層分佈46 3.1.4地層材料50 3.2邊坡歷次滑動及變更設計53 3.3現地監測計畫57 3.3.1監測儀器簡介57 3.3.2監測儀器配置65 3.3.3監測頻率與管理值72 第四章現地監測結果及探討75 4.1擋土排樁及邊坡土、岩層水平變位75 4.1.1位移與深度之關係76 4.1.2位移與降雨量之關係92 4.2地下水位104 4.3崩積土層基質吸力109 4.3.1降雨引致基質吸力變化109 4.3.2基質吸力與水平位移之關係121 第五章不飽和土壤邊坡穩定分析127 5.1模型之建立127 5.2分析參數129 5.3不飽和土壤有效參數的決定131 5.4分析結果討論132 第六章結論與建議143 6.1結論143 6.2建議145 參考文獻147

    1.周南山(2005),“山區道路邊坡災害防治”,森林遊憩設施規劃設計與施工研習會。
    2.林宏達、拱祥生(2001),“不飽和土壤力學性質試驗及其在邊坡工程之應用”,地工技術第83期,pp.39-52。
    3.拱祥生(1999),“降雨對不飽和土壤邊坡穩定性之影響研究”,國立台灣科技大學營建工程系,碩士論文。
    4.拱祥生(2003),“降雨造成邊坡滑動的工程行為”,技師報,第365期。
    5.高嘉彬(2007),“不飽和土壤邊坡基質吸力與位移之監測及滲流分析”,國立台灣科技大學營建工程系,碩士論文。
    6.拱祥生、林宏達、吳宏偉(2003),“不飽和土壤邊坡基質吸力量測及其在邊坡穩定分析之應用”,地工技術第83期,pp.39-52。
    7.廖洪鈞、廖瑞堂(2000),“坡地社區開發安全監測手冊”,內政部營建署營建自動化專案計畫報告。
    8.廖瑞堂(2001),“山坡地護坡工程設計”,科技圖書,台北。
    9.張文濤(2004),“基質吸力對於邊坡穩定性之研究-以林口台地為例”,台北科技大學土木與防災研究所。

    10.蔡孟棻(2005),“以土壤水份特性曲線評估不飽和土壤邊坡穩定性”,國立台灣科技大學營建工程系,碩士論文。
    11.Bear, J., Hydraulics of Groundwater, McGraw-hill, USA (1979).
    14~Lumb,P.(1975) , “Slope Failures in Hong Kong”,Quarterly Journal Engineering Geology, Vol. 8, pp.31-65.
    12.Bishop, A.W., 1955, “The Use of the Slip Circle in the Stability Analysis of Slopes”, Geotechnique, Vol.V, No.1, pp.7-17.
    13.Brand, E.W., Phillipson, H.B. (1984), “Site Investigation and Geotechnical Engineering Practice in HONG KONG”, Geotechnical Engineering, Vol. 15, No. 2, pp. 97-153.
    14.Croney, D., Coleman, J. D. (1948), “Soil Thermodynamics Applied to the Movement of Moisure in Road Foundations”, Proc. 7th Int. Cong. Appl.Mech., Vol. 3, pp. 163-177.
    15.Edlefsen, N. E., and Anderson, A. B. C. (1943), “Thermodynamics of Soil Moisture” , Hilgardia, Vol. 15, pp. 31-298.
    16.Fellenius, W. (1927), “Erdstatische Berechnungen mit Reibung und Kohasion” , Ernst, Berlin (in German.).
    17.Fredlund, D. G., and Morgenstern, N. R. (1977), “Stress State Variables for Unsaturated Soil” , Journal of Geotechnical Engineering , ASCE, GT5 , Vol. 103, pp. 447-446.
    18.Fredlund, D. G. & Morgenstern, N. R. (1978), “Stress State Variable for Unsaturated Soils,” ASCE J. of Geotechnical Engineering, Geotechnical Division, GT11, p1415-1416.
    19.Fredlund, D. G., Morgenstern, N. R., and Widger, R. A. (1978), “The Shear Strengthof Unsaturated Soils” , Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321.
    20.Fredlund, D. G., Rahardjo, H. (1993), “Soil Mechanics for Unsaturated Soils”, John Wiley, New York.
    21.Fredlund, D. G., Xing, A. (1994), “Equations for the Soil–Water Characteristic Curve ”, Canadian Geotechnical Journal, Vol. 31, pp. 521~532.
    22.Graham, J., (1984), “Method of Stability Analysis”, in Slope Instability, edited by Brunsden, D. and Prior, D.R., John Wiley & Sons , New York.
    23.Ho, D. G. and Fredlund, D. G. (1982), “A Multistage Triaxial Test for Unsaturated Soils”, Geotechnical Testing Journal,Vol.5,No.1,pp.18-28.
    24.Ho, D. Y. F. & Fredlund, D. G. (1982), “Increase in Strength due to Suction for Two Hong Kong Soils” , Proc. of ASCE Speciality Conference on Engineering and Construction in Tropical and Residual Soils, Hawaii, p263-296.
    25.Hoek, E., Carranza-Torres, C. T., and Corkum, B. (2002) , “Hoek-Brown failure criterion – 2002 edition”, Proc ,North American Rock Mechanics Society meeting in Toronto in July 2002.
    26.Janbu, N., (1968), “Slope Stability Computations”, Soil Mechanics and Foundation Engrg. Report, Technical University of Norway,Trondheim.
    27.Janbu, N., (1973), “Slope Stability Computations”, in Embankment Dams Engineering, edited by Hirschfeld, R.C. and Poulor, S.J., John Wiley & Sons, New York.
    28.Lambe, T. W. (1958), ”The Engineering Behavior of Compacted Clay”, Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 84, SM 2, Paper No.1655, pp. 1-35.
    29.Lim, T. T., Rahardjo, H., Chang, M. F., Fredlund, D. G. (1996), “Effect of Rainfall on Matric Suctions in a Residual Soil Slope”, Canadian Geotechnical Journal, Vol. 33, pp. 618-628.
    30.Lumb, P .(1975), “Slope Failures in Hong Kong”,Quarterly Journal Engineering Geology, Vol. 8, pp.31-65.
    31.Rahardjo, H., Li, X. W., Toll, D. G., and Leong, E. C. (2001), “The effect of antecedent rainfall on slope stability,” Geotechnical and Geological Engineering, Vol. 19, pp. 371-399.
    32.Richard, B. G. (1965), “Measurement of the Free Energy of Soil Moisture by the Psychrometric Technique Using Thermistors” ,in Moisture Equilibria and Moistrue Changes in Soils Beneath Covered Areas, A Symp. in Print. Australia: Butterworths, pp. 39-46.
    33.Spencer, E. (1967), “A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces”, Geotechnique,Vol.XⅦ, No.1, pp.11-26.
    34.Vanapalli, S. K., Fredlund , D. G., and Pufahl, D. E. (1999), “The Effect of Soil Structure and Stress History on the Soil-Water Characteristics of a Compact Till”, Geotechnique, Vol. 49, No. 2, pp. 143-159.

    QR CODE