簡易檢索 / 詳目顯示

研究生: 林冠宇
Kuan-Yu Lin
論文名稱: 風機塔柱受強風傾倒觸發機制暨其風險防阻措施之研究
Collapse Trigger Mechanism and Risk Prevention of Wind Turbine Towers in Strong Wind Environment
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 謝佑明
曾惠斌
歐昱辰
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 74
中文關鍵詞: 再生能源風力發電塔柱倒塌工程鑑識風險管理
外文關鍵詞: wind-power generation, tower collapses, forensic engineering, disaster-causing factors
相關次數: 點閱:303下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著世界能源枯竭及環保意識抬頭,再生能源為當今世界各國最受矚目的發展項目之一,而我國坐擁優良的風場環境,政府亦積極推廣風力發電並頒布「千架海陸風力機」計畫,預計在未來興建大量的風力發電機組,逐步帶動陸域及離岸風電的發展。然而台灣因地理位置的關係,夏季好發的颱風氣候常帶來強風豪雨,近年來造成台灣數起風機塔柱倒塌事故,引發嚴重的經濟損失。在極端氣候的影響下,颱風的強度及好發頻率日益嚴重,探討風機倒塌災因及因應台灣氣候影響的風險防阻措施則越顯重要。本研究藉由蒐集國內外風機塔柱倒塌之案例,探討風力發電機組受強風侵襲而倒塌之觸發機制,研析風機於強風中的作動機制及受力行為,歸納風機倒塌之致災因子,進而運用風險管理之手法,針對風機塔柱受強風破壞及倒塌之肇因,研擬風險防阻之措施,防止爾後類似工程事故之發生。


    As energy becomes increasingly scarce and people’s environmental awareness increases, renewable energy has become one of the world’s most highly anticipated areas of development. Taiwan possesses an outstanding wind farm environment, and the Taiwanese government actively promotes wind-power generation (e.g., it has introduced its “Thousand Wind Turbines Project”). In the future, many wind turbines are expected to be built, which will gradually drive the development of land-based and offshore wind turbines. Because of its geographical location, Taiwan is prone to experiencing typhoons that bring constant strong winds and torrential rain in the summer. These natural phenomena have resulted in several wind turbine tower collapses in Taiwan over recent years, incurring serious economic losses. Influenced by extreme weather, typhoon intensity and frequency have become increasingly serious, so identifying the causes of wind turbine collapses and corresponding risk prevention measures (that take into account Taiwan’s climate) have become markedly critical. In this study, domestic and foreign wind turbine tower collapse cases were explored to identify the triggering mechanisms of strong wind-led wind turbine collapses, research and analyze the activation mechanisms of and forces sustained by the wind turbines at these times, and generalize the factors of wind turbine collapse. Subsequently, risk management methods were employed to determine the causes of strong wind-led wind turbine tower damage and collapses, on the basis of which risk prevention mechanisms were developed to prevent these accidents from occurring.

    目錄 摘要 I Abstract II 致謝 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 1 第二章 文獻回顧 3 2.1. 再生能源之需求與現況 3 2.2. 台灣與全球風力發電之現況與發展 4 2.3. 風機災損統計 8 2.4. 風險管理之應用 11 第三章 研究流程與方法 14 3.1. 研究流程 14 3.2. 分析方法 15 3.2.1. 鑑識工程 15 3.2.2. 風險管理 16 第四章 風機倒塌案例蒐集與分析 19 4.1. 風機倒塌案例蒐集 19 4.2. 風機倒塌案例分析 24 4.2.1. 單因子分析 24 4.2.2. 樞紐分析 28 4.3. 小結 34 第五章 風機傾倒機制探討 36 5.1. 風機結構受強風之影響 36 5.1.1. 風機於強風下之作動機制 36 5.1.2. 風機受力與破壞機制探討 37 5.2. 致災因子探討 41 5.2.1. 風機控制系統 42 5.2.2. 塔柱結構安全性 43 5.2.3. 其他因素 44 第六章 風險分析與防阻 47 6.1. 風機倒塌災因辨識 47 6.2. 災害風險矩陣分析 48 6.3. 風機倒塌風險防阻探討 51 第七章 結論與建議 53 參考文獻 55 附錄一 國際案例風機倒塌照片 61

    [1] 太鼓山風力発電所事故について. Retrieved june 28, 2017, from http://www.meti.go.jp/committee/sankoushin/hoan/denryoku_anzen/furyokuhatsuden_setsubi/pdf/004_01_01.pdf
    [2] A. Adem, M. Dağdeviren, A. Çolak, M. Kabak, Fuzzy Prioritization Approach for Risks of Wind Turbine Life Cycle, Procedia Computer Science 102 (2016) 406-413.
    [3] I. Anastasopoulos, Building damage during nearby construction: Forensic analysis, Engineering Failure Analysis 34 (2013) 252-267.
    [4] T. Aven, Improving risk characterisations in practical situations by highlighting knowledge aspects, with applications to risk matrices, Reliability Engineering & System Safety 167 (2017) 42-48.
    [5] T. Brome. Wyoming turbine collapse. Retrieved june 28, 2017, from http://www.windaction.org/pictures/30961
    [6] S. Brown, Forensic engineering: Reduction of risk and improving technology (for all things great and small), Engineering Failure Analysis 14 (6) (2007) 1019-1037.
    [7] X. Chen, C. Li, J. Xu, Failure investigation on a coastal wind farm damaged by super typhoon: A forensic engineering study, Journal of Wind Engineering and Industrial Aerodynamics 147 (2015) 132-142.
    [8] X. Chen, J.Z. Xu, Structural failure analysis of wind turbines impacted by super typhoon Usagi, Engineering Failure Analysis 60 (2016) 391-404.
    [9] X. Chen, W. Zhao, X.L. Zhao, J.Z. Xu, Preliminary failure investigation of a 52.3m glass/epoxy composite wind turbine blade, Engineering Failure Analysis 44 (2014) 345-350.
    [10] G. Cheng, X. Shi, Research on forensic engineering system of bridge, 2012 International Conference of Green Building Materials and Energy-Saving Construction, GBMEC 2012, August 18, 2012 - August 18, 2012, Vol. 575, Trans Tech Publications, Harbin, China, 2012, pp. 6-10.
    [11] C.-W. Chien, J.-J. Jang, A study of wind-resistant safety design of wind turbines tower system, 7th Asia-Pacific Conference on Wind Engineering, APCWE-VII, November 8, 2009 - November 12, 2009, Chinese Taiwan Association for Wind Engineering, Taipei, Taiwan, 2009.
    [12] J.-S. Chou, C.-K. Chiu, I.K. Huang, K.-N. Chi, Failure analysis of wind turbine blade under critical wind loads, Engineering Failure Analysis 27 (2013) 99-118.
    [13] J.-S. Chou, W.-T. Tu, Failure analysis and risk management of a collapsed large wind turbine tower, Engineering Failure Analysis 18 (1) (2011) 295-313.
    [14] O.O.f.E. Co-operation, Development, CO2 Emissions from Fuel Combustion (detailed estimates) Vol 2016, IEA CO2 Emissions from Fuel Combustion - 335 (1) (2016) 1-1.
    [15] J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J.T. Turnure, L. Westfall, International Energy Outlook 2016 With Projections to 2040, ; USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis, 2016, p. Medium: ED; Size: 290 p.
    [16] L.A. Cox, What's wrong with risk matrices?, Risk Analysis 28 (2) (2008) 497-512.
    [17] Devon. North Devon turbine collapse firm blames fixings. Retrieved june 28, 2017, from http://www.bbc.com/news/uk-england-devon-21577717
    [18] N. Dimitrov, R.D. Bitsche, J.P. Blasques, Spatial reliability analysis of a wind turbine blade cross section subjected to multi-axial extreme loading, Structural Safety 66 (2017) 27-37.
    [19] F. Dinmohammadi, M. Shafiee, A Fuzzy-FMEA Risk Assessment Approach for Offshore Wind Turbines, INTERNATIONAL JOURNAL OF Prognostics and Health Management 4 (2013).
    [20] Y. Duan, J. Zhao, J. Chen, G. Bai, A risk matrix analysis method based on potential risk influence: A case study on cryogenic liquid hydrogen filling system, Process Safety and Environmental Protection 102 (2016) 277-287.
    [21] T. Ekelund, Yaw control for reduction of structural dynamic loads in wind turbines, Journal of Wind Engineering and Industrial Aerodynamics 85 (3) (2000) 241-262.
    [22] p. energia. (2014). Forte tempestade derruba 8 aerogeradores em parque eólico no RS – Brasil. Retrieved june 28, 2017, from http://www.portal-energia.com/forte-tempestade-derruba-8-aerogeradores-em-parque-eolico-no-rs-brasil/
    [23] R. Francoeur. (2017). Nova Scotia Power investigating Cape Breton wind turbine collapse. Retrieved june 28, 2017, from https://www.ebmag.com/renewables/nova-scotia-power-investigating-cape-breton-wind-turbine-collapse-19456
    [24] J.d. Freitas. (2015). SWEDEN: 400-ton turbine has turned over. Retrieved june 28, 2017, from http://www.windaction.org/posts/43999-sweden-400-ton-turbine-has-turnedover#.WFo3BrJ969J
    [25] Q.-F. Gao, H. Dong, Z.-W. Deng, Y.-Y. Ma, Wind-induced dynamic amplification effects on the shallow foundation of a horizontal-axis wind turbine, Computers and Geotechnics 88 (2017) 9-17.
    [26] G. Huai-zhang, Z. Xin-sheng, 福. 福建大唐国际风电开发有限公司, 361004, 风电场风机变桨系统故障分析, 湖南电力 (2012年 06) (2012) 35-37.
    [27] IEA, Renewables Information 2016, IEA.
    [28] S. Ingram. (2014). Huge wind turbine falls in Fayette County. Retrieved june 28, 2017, from http://www.wtae.com/article/huge-wind-turbine-falls-in-fayette-county-1/7464674
    [29] J. Kang, L. Sun, H. Sun, C. Wu, Risk assessment of floating offshore wind turbine based on correlation-FMEA, Ocean Engineering 129 (2017) 382-388.
    [30] B. LeBlanc. (2016). Exelon: Mechanical failure led to turbine collapse. Retrieved june 28, 2017, from http://www.freep.com/story/news/local/2016/05/06/exelon-mechanical-failure-led-turbine-collapse/84029940/
    [31] G.d.N.P. Leite, A.M. Araújo, P.A.C. Rosas, Prognostic techniques applied to maintenance of wind turbines: a concise and specific review, Renewable and Sustainable Energy Reviews.
    [32] Z.-q. Li, S.-j. Chen, H. Ma, T. Feng, Design defect of wind turbine operating in typhoon activity zone, Engineering Failure Analysis 27 (2013) 165-172.
    [33] L. Linowes. Catastrophic turbine failure at Vermont wind farm raises doubt about turbine safety, longevity. Retrieved june 28, 2017, from http://www.windaction.org/posts/17503-catastrophic-turbine-failure-at-vermont-wind-farm-raises-doubt-about-turbine-safety-longevity#.WJhEc1N969I
    [34] G. Lloyd, Guideline for the Certification of Wind Turbines, Hamburg,Germany, 2010.
    [35] J. Mariani. Officials investigating why 187-ton windmill collapsed in Fenner. Retrieved june 28, 2017, from http://www.syracuse.com/news/index.ssf/2009/12/officials_hope_to_learn_why_wi.html
    [36] A.S. Markowski, M.S. Mannan, Fuzzy risk matrix, Journal of Hazardous Materials 159 (1) (2008) 152-157.
    [37] M. Martinez-Luengo, A. Kolios, L. Wang, Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm, Renewable and Sustainable Energy Reviews 64 (2016) 91-105.
    [38] M. McGovern. (2014). One Suzlon turbine destroyed and two badly damaged. Retrieved june 28, 2017, from http://www.windpowermonthly.com/article/1325609/one-suzlon-turbine-destroyed-two-badly-damaged
    [39] M. McGovern. (2016). Suzlon investigating turbine fall in Brazil. Retrieved june 28, 2017, from http://www.windpowermonthly.com/article/1382735/suzlon-investigating-turbine-fall-brazil
    [40] M. Menon, F.L. Ponta, Dynamic aeroelastic behavior of wind turbine rotors in rapid pitch-control actions, Renewable Energy 107 (2017) 327-339.
    [41] C. Offshore. 4C Offshore, Global Wind Speed Rankings. from http://www.4coffshore.com/windfarms/windspeeds.aspx
    [42] M.M. Oueslati, A.W. Dahmouni, S.B. Nasrallah, Effects of sudden change in pitch angle on oscillating wind turbine airfoil performances, Engineering Analysis with Boundary Elements 81 (2017) 21-34.
    [43] J. Pelley. (2016). Ocotillo Express LLC: turbine Collapse. Retrieved june 28, 2017, from http://icpds.com/CMS/Media/Ocotillo-Wind-Report-on-T-126-Turbine-Failure-121316.pdf
    [44] B. Ruskin. (2016). Wind turbine collapse wreckage in Cape Breton combed for clues of cause. Retrieved june 28, 2017, from http://www.cbc.ca/news/canada/nova-scotia/wind-turbine-collapse-point-tupper-cape-breton-enercon-renewable-1.3734562
    [45] L. Sgambi, Influence of degradation at the base of a support post in a collapse of an old guardrail: A forensic analysis, Engineering Failure Analysis 42 (2014) 284-296.
    [46] M. Shafiee, F. Dinmohammadi, An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore, Energies 7 (2) (2014) 619-642.
    [47] shropshirestar. More trouble with wind turbines. Retrieved june 28, 2017, from http://www.shropshirestar.com/news/2012/01/20/more-trouble-with-wind-turbines/
    [48] stopthesethings. Happenstance or Enemy Action? Giant Wind Turbines Collapsing with Alarming Regularity. Retrieved june 28, 2017, from https://stopthesethings.com/2015/12/22/happenstance-or-enemy-action-giant-wind-turbines-collapsing-with-alarming-regularity/
    [49] D. Tagesspiegel. (2014). Wind turbine collapses in Brandenburg. Retrieved june 28, 2017, from http://www.windaction.org/posts/44961-wind-turbine-collapses-in-brandenburg#.WG4k21N969I
    [50] Q. Team. (2015). QUALITY ALERT: Wind Turbine collapses in Northern Ireland ! Retrieved june 28, 2017, from http://www.qualityinconstruction.com/quality-alert-wind-turbine-collapses-in-northern-ireland/
    [51] J. Vazquez. (2014). Wind turbine collapses in Haskell County. Retrieved june 28, 2017, from https://www.wind-watch.org/news/2014/12/16/wind-turbine-collapses-in-haskell-county/
    [52] L. Wang, X. Liu, A. Kolios, State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling, Renewable and Sustainable Energy Reviews 64 (2016) 195-210.
    [53] D. Williams. (2017). Collapse of wind turbine under investigation. Retrieved june 28, 2017, from http://www.powerengineeringint.com/articles/2017/01/collapse-of-wind-turbine-under-investigation.html
    [54] J. Yang, H.-Z. Huang, L.-P. He, S.-P. Zhu, D. Wen, Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using Dempster–Shafer evidence theory under uncertainty, Engineering Failure Analysis 18 (8) (2011) 2084-2092.
    [55] D. Young. (2017). Wind turbine collapses as storms batter Northern Ireland. Retrieved june 28, 2017, from http://www.belfasttelegraph.co.uk/news/northern-ireland/wind-turbine-collapses-as-storms-batter-northern-ireland-35419583.html
    [56] Youtube. Nordtank (Vestas) wind system fail and crashes. Retrieved june 28, 2017, from https://www.youtube.com/watch?v=CqEccgR0q-o
    [57] 王明德, 防治履約爭議 鑑識工程鶴起, 營建知訊 294 (2007) 10-15.
    [58] 王智佳, 高美濕地風力發電機受蘇迪勒颱風侵襲之塔柱力學分析, 營建工程系, 國立臺灣科技大學, 2016.
    [59] 沖繩電力株式会社. (2004). 台風14号による風力発電設備の倒壊等事故調査報告書. from http://www.meti.go.jp/policy/safety_security/industrial_safety/oshirase/2004/files/161125-2.pdf
    [60] 王. 林馨. (2014). 沿海风电场难抵“威马逊”台风. Retrieved june 28, 2017, from https://read01.com/dO5g63.html
    [61] 浙江运达风力发电工程有限公司. 桑美台风对我国风力发电机组制造业的影响. Retrieved june 28, 2017, from http://wenku.baidu.com/view/c514e6ee19e8b8f67c1cb99d.html
    [62] 蔡易陞、邱培菡、林輝政、黃心豪, 大型風力發電機葉片設計與分析, 第 36 屆海洋工程研討會論文集 (2014).

    無法下載圖示 全文公開日期 2022/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE