簡易檢索 / 詳目顯示

研究生: 林咨佑
Zih-you Lin
論文名稱: 以溶膠-凝膠法製備二氧化矽粒子做為TCO玻璃散射層之研究
Preparation of silica particles using sol-gel method and its application in forming a light-scattering layer for ZnO-based TCO glasses
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 王孟菊
Meng-Jiy Wang
魏大欽
Ta-Chin Wei
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 112
中文關鍵詞: 二氧化矽散射層氧化鋅光捕捉透明導電氧化物矽基薄膜太陽能電池
外文關鍵詞: SiO2, scattering layer, zinc oxide, light trapping, transparent conductive oxide, silicon thin film solar cell
相關次數: 點閱:242下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係在玻璃上塗布以TEOS溶膠-凝膠法合成的二氧化矽粒子於玻璃上並平滑化作為具光捕捉能力的散射層,之後再鍍上透明導電氧化物(TCO)層形成具光學散射功能的TCO玻璃並應用於矽基薄膜太陽能電池的製作。首先使用溶膠-凝膠法製備二氧化矽散射球體,藉由改變TEOS濃度、氨水濃度、分散劑劑量等合成條件以及塗布方式,探討製備出的二氧化矽散射球體層的形態、分散狀態及其光學表現。結果顯示,當控制二氧化矽球體的平均粒徑為1 μm、固定散射球體的平滑玻璃層(SOG層)厚度為300 nm、濺鍍摻鋁氧化鋅層厚度為700 nm時,可製作出片電阻為7.8 Ω/□、粒子均勻分佈、總透光率接近80 %的TCO玻璃。其光學散射能力對400~800 nm波長範圍的散射穿透率平均達50%,且在1200 nm的紅外光處仍有20%以上的散射穿透率。在此TCO玻璃上試作非晶矽薄膜太陽電池元件的結果顯示,相較於在Asahi U型玻璃上的電池Jsc僅有10.8 mA/cm2,本研究所製備的新型TCO玻璃上的電池Jsc可增加到12.9 mA/cm2 (提升19.4%),顯示散射層確實具有增加光捕捉的效果。


    SiO2 particles were synthesized by TEOS as a sol-gel agent on glass substrates to fabricate a light scattering layer accompanied with a spin-on glass (SOG) layer for surface smoothing treatment. Then, a new textured TCO glass for silicon based thin film solar cells was accomplished after depositing TCO layer on the light scattering layer.
    First of all, the TEOS sol-gel process was used to make a mono-dispersed silica particle layer as the silica light scattering layer. Preparation conditions like the concentration of TEOS, the concentration of ammonium hydroxide, the quantity of dispersing agent and the coating type were systematically varied so as to investigate the morphological and optical properties of the silica scattering layer. Through a combination of 1-μm silica particle layer, 300-nm SOG layer, and 700-nm sputtered AZO layer, we obtained a textured TCO glass with sheet resistance of 7.8 Ω/□, total transmittance about 80%, and diffused transmittance (λ=400nm~800nm) over 50%.
    A trial of a-Si:H thin film solar cell fabrication on the newly textured TCO glass showed a short circuit current density of 12.9mA/cm2, which is about 19.4% higher than that prepared on Asahi-U type glass, indicating the effectiveness of the light-scattering of the proposed TCO glass.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖 索 引 VIII 表 索 引 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 理論基礎與文獻回顧 5 2.1非晶矽薄膜 5 2.1.1非晶矽的原子結構及其基本特性 5 2.2 非晶矽薄膜太陽能電池元件結構及光電轉換原理 7 2.2.1非晶矽薄膜太陽能電池元件結構 7 2.2.2非晶矽薄膜太陽能電池光電轉換原理 10 2.2.3太陽光頻譜響應 11 2.2.4光電轉換效率 12 2.3 應用於矽薄膜太陽電池之透明導電玻璃 13 2.3.1 光捕捉效應 13 2.3.2 TCO 玻璃的技術現狀 16 2.4 以二氧化矽作為散射層之光捕捉結構 23 2.5二氧化矽散射層之製備 24 2.5.1二氧化矽膠體(colloidal silica) 24 2.5.2 二氧化矽粒徑大小之控制 26 第三章 實驗方法與步驟 29 3.1實驗流程圖 29 3.2實驗藥品及氣體 30 3.3實驗裝置 32 3.3.1使用磁控射頻濺鍍系統成長透明導電玻璃薄膜 32 3.4 分析儀器 34 3.4.1紫外光/可見光光譜儀 (UV/VIS) 34 3.4.2太陽光模擬器 (solar simulator) 37 3.4.3橢圓偏光儀(Ellipsometer) 41 3.4.4場發射掃描式電子顯微鏡 (field emission scanning electronmicroscope, FE-SEM) 42 3.4.5霍爾量測儀 (Hall measurement) 43 3.5實驗步驟 46 3.5.1玻璃基材清洗 46 3.5.2 二氧化矽散射顆粒的製備 46 3.5.3 平滑玻璃層 (spin-on glass ; SOG)層的製備 47 3.5.4 TCO鍍膜 47 3.5.5成長非晶矽薄膜太陽能電池元件 48 第四章 實驗結果與討論 49 4.1二氧化矽散射粒子層的製備 49 4.1.1以Stober法(bottom-up)合成二氧化矽球體 49 4.1.2改變TEOS濃度對成長二氧化矽粒子大小的影響 51 4.1.3改變氨水濃度對二氧化矽粒子成長的影響 55 4.1.4以旋轉塗布法製備二氧化矽散射層的探討 57 4.1.5以超音波噴霧塗布技術製備二氧化矽散射層的探討 61 4.2透明導電層(TCO)的製作 69 4.2.1以射頻磁控濺鍍法製備AZO(氧化鋅鋁)透明導電層 69 4.2.2濺鍍總壓對成長AZO透明導電膜的電學特性影響 70 4.2.3濺鍍時基材溫度對成長AZO透明導電膜的光電特性影響 72 4.3散射粒子層作進一步的平滑化處理 75 4.3.1探討TCO層形成裂縫的原因及對策 75 4.3.2利用兩階段成長法製備大尺寸二氧化矽粒子並以SOG對其作平滑化處理 81 4.4散射層結合透明導電薄膜的光電性探討及矽薄膜太陽能電池試做 87 第五章 結論 91 參考文獻 93

    1. 張元鴻, “具長波長光散射能力的新型TCO玻璃之開發及其在矽基薄膜太陽電池的應用”, 台灣科技大學碩士學位論文(2012)
    2. Mullerova, J., Jurecka, S., Sutta, P., and Mikula, M., “Structural and Optical Studies of a-Si:H Thin Films: from Amorphous to Nanocrystalline Silicon” Acta Phys. Slovaca., Vol.55, pp.351-359 (2005).
    3. Kasap, S.O., Principles of Electronic Materials and Devices, pp.81 (2006).
    4. Shah, A. V., Schade, H., Vanecek, M., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C., and Bailat, J., “Thin-Film Silicon Solar Cell Technology” Prog. Photovolt: Res. Appl., Vol.12 pp.113-142 (2004).
    5. Carabe, J. and J.J. Gandia, “Thin-Film-Silicon Solar Cells” Opto-Electron. Rev., Vol.12, pp.1-6 (2004).
    6. J.Poortmans, V.A., Thin Film Solar Cells Fabrication, Characterization and Application, John Wiley and Sons, pp.182 (2006).
    7. Luque, Antonio, and Steven Hegedus, eds. Handbook of photovoltaic science and engineering. Wiley. com, 2011.
    8. J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells” Solar Energy, 77, 917 (2004).
    9. https://www.agc.co.jp/english/rd/topics_04.html
    10. D. Rajesh, J. Tapati, R. Swati, “Degradation studies of transparent conducting oxide:a substrate of microcrystalline silicon thin film solar cells” Solar Energy Materials & Solar Cells, 86, 207 (2005).
    11. http://www.oerlikon.com/ecomaXL/index.php?site=SOLAR_EN_tco_1200
    12. S. Fay, J. Steinhauser, S. Nicolay, C. Ballif, “Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells” Thin Solid Films, Vol.518, 2961 (2010).
    13. http://www.vaat.biz/content/eng/photovoltaics.htm
    14. T. Tohsophon, J. Hupkes, H. Siekmann, B Rech, M Schultheis, N. Sirikulrat, “High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells“ Thin Solid Films, Vol.516,pp.4628-4632 (2008).
    15. M.Berginski, B. Rech, J. Hupkes, H.Stiebig, M. Wuttig, “Electrochemical texturing of Al-doped ZnO thin films for photovoltaic applications”Proc. of SPIE, 6197, 61970Y, (2006).
    16. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, H.W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells” Thin Solid Films, Vol.351, 247 (1999).
    17. J. Steinhauser, J.-F. Boucher, E. Omnes, D. Borrello, E. Vallat-Sauvain, G. Monteduro, M. Marmelo, J.-B. Orhan, B. Wolf, J. Bailat, S. Benagli, J. Meier, U. Kroll, Thin Solid Films 520.4 (2011): 1218-1222.
    18. S. Nicolay, M. Benkhaira, L. Ding, J. Escarre, G. Bugnon, F. Meillaud, C. Ballif, Solar Energy Materials and Solar Cells 105 (2012): 46-52.
    19. Hongsingthong, Aswin, et al. , Jpn. J. Appl. Phys. Appl. 51.10 (2012).
    20. Kolbe, G., Dissertation, Jena, 1956
    21. LaMer, Victor K., and Robert H. Dinegar., Journal of the American Chemical Society 72.11 (1950): 4847-4854.
    22. T. Matsoukas and E. Gulari, Journal of Colloid And Interface Science, vol. 124, no. 1, pp. 252–261, 1988.
    23. T. Matsoukas and E. Gulari, Journal of Colloid And Interface Science, vol. 132,no. 1, pp. 13–21, 1989.
    24. G. H. Bogush, M. A. Tracy, and C. F. Zukoski, Journal of Non-Crystalline Solids, vol. 104, no. 1, pp. 95–106, 1988.
    25. G.H. Bogush, M.A. Tracy, and C.F. Zukoski, IV, J. Non-Cryst. Solids104,95 (1988).
    26. W. Stober and A. Fink, J. Colloid Interface Sci.26,62 (1968).
    27. Tan, C. G.; Bowen, B. D.; Epstein, N. J. Colloid Interface Sci. 1987, 118, 290.
    28. Rahman, Ismail Ab, and Vejayakumaran Padavettan, Journal of Nanomaterials 2012 (2012): 8.
    29. O. Kluth, G.Schope, B.Rech, J. Thin Solid Films, Vol.442, pp.80-85 (2003).
    30. M. Python and C. Ballif, Journal of Solar Energy Materials & Solar Cells, Vol.93, pp.1714-1720 (2009).

    QR CODE