簡易檢索 / 詳目顯示

研究生: 張博傑
Bo-jie Zhang
論文名稱: 複合觸媒對鋅蒸氣氧化法成長氧化鋅奈米線之影響
The effects of catalysts on the growth of ZnO nanowire by the oxidation of evaporating Zn vapor
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 黃鶯聲
Ying-Sheng Huang
薛人愷
none
郭永綱
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 97
中文關鍵詞: 氧化鋅奈米線蒸汽氧化法複合觸媒
外文關鍵詞: ZnO nanowires, Oxidation of Evaporating Zn vapor, multi-catalyst
相關次數: 點閱:208下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,奈米尺寸材料在光電應用上的發展漸漸受到重視,使許多的Ⅲ-Ⅴ族、氧化物半導體材料,開始投入許多研究與開發,其中氧化鋅奈米材料( 奈米線、奈米帶、奈米顆粒…等等 )由於擁有寬能隙(3.37 eV)與高激子束縛能(exciton binding energy,60 meV)等優點,最被認為是在未來做為個發光二極體與雷射二極體的材料。
鋅蒸汽氧化法具有大面積製作、成本低廉、在較低的溫度下成長等優點。因此本實驗使用此方法來製備一維材料。於600℃~800℃,反應時間為2 小時,沉積氧化鋅一維結構,並藉由不同組成之複合觸媒基板、鋅源、反應溫度等,來進行氧化鋅一維結構的成長與研究。
實驗結果發現,使用比例1:1的混合金屬鋅粉與氧化鋅粉之鋅源,於600℃~800℃,氧氣流量10 sccm,反應壓力為1大氣壓下,於鍍有金觸媒之矽基板可以沉積成長出長度約在幾十微米到幾百微米,直徑約100 ~120 nm的氧化鋅一維結構。於複合觸媒基板研究,我們選用金、鋁、鎳、銦以及錫並採用雙層金屬層的復合觸媒來研究不同觸媒組合對氧化鋅一維奈米線成長之影響。複合基板上層鍍有鋁、鎳以及銦是不利的觸媒,於上層鍍有金與錫是好的,其中以錫為上層的複合基板所生成之氧化鋅一維結構有最為整齊之表面形貌,若將鍍有錫之複合基板先經退火再成長氧化鋅一維結構,則可令氧化鋅一維結構的直徑減小。
而由TEM觀察以及EDS元素分析中,顯示了在氧化鋅一維結構的頂端並無發現合金觸媒,由此推測反應應該是鋅蒸氣於升溫階段先溶解於觸媒中,並且過飽和直至析出鋅液滴,待達到反應溫度通入氧氣時,氧氣與鋅液滴反應並析出成長出氧化鋅一維結構。另外從TEM結構分析,氧化鋅一維結構為wurtzite結構。
能否成長氧化銦奈米線的關鍵,我們推論適當鋅蒸氣的產生、液態滴狀鋅與觸媒合金間的表面張力、溼潤度關係、氧化鋅於液態滴狀鋅內的過飽和析出等,皆為重要因素。


In recent years, nanostructures have attracted much attention because of its potentials for electric and optoelectric applications. Nanostructured semiconductors such as III-V and oxides have been widely studied and developed. Nanostructured zinc oxide (nanowire, nanobelt, nanoparticle etc.) with a wide band gap and high exciton bonding energy, (60 meV) has become the most suitable material for LED and LD in the future. Several one-dimensional ZnO nanowires and nanorods have been fabricated by using different methods such as electrochemical deposition/oxidizing, hydrothermal route, template-based approach, PVD, CVD etc. However, using the Oxidation of Evaporating Zn vapor method has many advantages of mass production, low cost, and low growth temperature.
In this study, Oxidation of Evaporating Zn vapor was applied to fabricate 1-D ZnO on the multi-catalyst substrates at 600~800oC for 2h with a oxygen flow rate of 10 sccm. The zinc source was the mixture of Zn and ZnO in the ratio of 1:1. The ZnO nanowires grown on the Au-catalyzed substrates had a length of several tenths to several hundreds micrometers and a diameter of 100-120 nm. In the multi-catalyst experiments, the Au, Al, Ni, In, Sn, and their combinations in the form of bi-layers were selected. If Al, Ni, and In were used as the upper layer of a bi-layer catalyst, no 1-D wires were obtained. Au and Sn, especially the Sn, had been used on the upper layer of a bi-layered catalyst in order to obtained ordered 1-D ZnO wires. If the Sn-containing bi-layered substrates were annealed, 1-D ZnO with a small diameter was obtained.
From the TEM and EDS characterizations, no catalysts were observed on the tips of ZnO nanowires. A self-catalysis mechanism has been proposed for the growth of our 1-D ZnO nanowires. This nanowires was also identified to have a hexagonal structure. The 1-D ZnO grown on the Sn-containing bi-layered substrates was found to be a single crystal and a solid solution of ZnO and SnO2 with their ratio of 2:1.
The growth of our 1-D ZnO nanowires involves the formation of zinc vapor, the surface tension between the zinc droplets and alloy catalyst, wettability of catalyst and substrate, and oversaturation and precipitation of Zn deoplets.

誌謝 摘要II AbstractIV 目錄VI 表目錄VIII 圖目錄IX 第一章緒論………………………………………………………………………1 1-1前言…………………………………………………………………………..1 1-2研究動機與目的3 第二章材料特性與文獻回顧6 2-1氧化鋅的基本性質6 2-1-1 氧化鋅材料結構與特性6 2-1-2氧化鋅的光學特性8 2-1-3氧化鋅的電學特性10 2-2氧化鋅製備方法11 2-2-1 化學氣相沈積法(CVD)原理12 2-2-2 有機金屬化學氣相沉積法(MOCVD)17 2-2-3 蒸氣氧化法21 2-2-4 物理氣相沈積法(物理蒸鍍)26 2-2-5 化學溶液法29 2-2-6 溶膠凝膠法(Sol–gel法)32 2-2-7 模板法33 第三章 實驗方法與步驟36 3-1實驗設備說明36 3-1-1鍍金機36 3-1-2 DC濺鍍機( DC-Sputter )36 3-1-3 磁控RF濺鍍機( RF-Sputter )36 3-1-4 自組式熱壓機36 3-1-5自組式水平管型高溫爐37 3-2 實驗藥品選擇38 3-3實驗流程38 3-3-1基板清洗40 3-3-2 靶材製備42 3-3-3 觸媒沉積42 3-3-4 一維奈米材料成長42 3-3-4 製程參數及步驟43 3-5 性質量測及分析儀器44 3-5-1表面分析44 3-5-2結構分析45 3-5-3成分分析45 3-5-4光電特性分析46 第四章結果與討論47 4-1 表面形貌與顯微結構...........................................................................47 4-1-1 鋅源種類對於沉積氧化鋅奈米結構之影響...................................47 4-1-2 沉積溫度對氧化鋅奈米結構之影響……………………………...51 4-1-3金屬鋅與氧化鋅粉末比例對氧化鋅奈米結構之影響…………....53 4-1-4 不同單層觸媒基板對於沉積氧化鋅奈米結構之影響...................55 4-1-5 不同複合觸媒基板對於沉積氧化鋅奈米結構之影響...................57 4-1-6 不同的復合觸媒其退火溫度對於沉積氧化鋅奈米結構之影響...62 4-2 XRD與TEM分析氧化銦奈米線結構........................................................66 4-2-1 氧化鋅材料之XRD結構分析.........................................................66 4-2-2 TEM分析氧化鋅奈米線結構………………………………………...…68 4-2-2-1 TEM圖像與元素分析( EDS )……………………………………68 4-2-2-2 TEM鑑定氧化鋅奈米線結構……………………………………70 4-2-2-3 氧化鋅奈米線HR圖像與平面間距…………………………….72 4-3 氧化鋅奈米線之PL量測分析.....................................................................74 4-4 探討氧化鋅奈米線的成長過程及機制………………….......……………78 第五章結論86 參考文獻89

Iijima, Helical microbubules of graphitic carbon, Nature, 354, 56,1991
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001).
C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. T. Lee, Adv. Mater 15, 838 (2003).
B. Liu, H. C. Zeng, J. Am. Chem. Soc 125, 4430 (2003).
A. B. Hartanto, X. Ning, Y. Nakata, T. Okada, Appl. Phys. A 78, 299 (2003).
M. Guo, P. Diao, S. Cai, J. Solid State Chem 178, 1864 (2005).
Tsung-Han Chen, Shih-Chin Chang, I-Nan Lin, Diamond & Related Materials 14, 774–777(2005)
Z.Q. Zhang, C.B. Jiang, S.X. Li, S.X. Mao, Journal of Crystal Growth 277, 321–329(2005)
Y. B. Li, Y. Bando, T. Sato, K. Kurashima, Appl. Phys. Lett 81, 144 (2002).
H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, P. Yang, Adv. Mater 15, 1907 (2003).
D. A. Neamen, Semiconductor Physics & Devices, 2nd ed., p105 (1992).
Numerical Data and Functional Relationships in Science and Technology. V.22, Subvolume a. Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds., BerlinSpringer-Verlag, 1987.
Jih-Jen Wu, Sai-Chang Liu, J. Phys. Chem. B. 106, 9546 (2002).
Y. Chen, Y Chen, DM Bagnall, H Koh, K Park, K Hiraga, Z Zhu, J. Appl. Phys. 84, 3912 (1998).
A. Tsukazaki, A. Ohtomo, T. Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki. Nat. Mater. 4, 42(2005).
V. Srikant, D.R. Clarke, J. Appl. Phys., 83, 5447 (1998).
Y. W. Jin, J. E. Jang, W. K. Yi, J. E. Jung, N. S. Lee, J. M. Kim, D. Y. Jeon and J. P. Hong, J. Vac. Sci. Technol. B. 17, 489 (1999).
A. Tsukazaki, A. Ohtomo, T. Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F.Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki. Nat. Mater. 4, 42 (2005).
P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Solid State Commun. 103, 459 (1997)
A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai Y. Yoshida T. Yasuda, Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998)
T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, Appl. Phys. Lett. 78, 1237(2001)
C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, Appl. Phys. Lett., 81, 3648 (2002).
M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 292, 1897 (2001).
Y. Chen, Y Chen, DM Bagnall, H Koh, K Park, K Hiraga, Z Zhu, J. Appl. Phys. 84, 3912 (1998).
Zhang, X.T.; Liu, Y.C.; Zhi, Z.Z.; Zhang, J.Y.; Lu, Y.M.; Shen, D.Z.; Xu, W.; Fan, X.W.; Kong, X.G., J. Lumin. 99, 149 (2002).
Pearson’s Handbook of Crystallographic Data, 4795.
P. W. Tasker, J. Phys. C: Solid State Phys. 12, 4977 (1979).
O. Dulub, U. Diebold and G. Kresse, Phys. Rev. Lett. 90, 016102 (2003).
A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton and N. M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, G. S. Gil, U. Burghaus and C. Woll, Phys. Rev. Lett. 90, 106102 (2003).
Y.W. Heo, M. Kaufman, K. Pruessner, D.P. Norton, F. Ren, M.F. Chisholm, and P.H. Fleming, Solid-State Electron, 47, 2269 (2003)
W. I. Park, S. J. An, J. L. Yang, G. -C. Yi, S. Hong, T. Joo, and M. Kim, J. Phys. Chem. B, 108, 15457-15460(2004)
王瑞琪, 成功大學博士論文,2006
A. El-Yadouni, A. Boudrioua, J. C. Loulergue, V. Sallet, R. Triboulet, Opt. Mater. 27, 1391–1395 (2005).
吳佳玲,清華大學碩士論文,2004.
Y.W. Heo, M. Kaufman, K. Pruessner, D.P. Norton, F. Ren, M.F. Chisholm, and P.H. Fleming, Solid-State Electron. 47, 2269 (2003)
W. I. Park, S. J. An, J. L. Yang, G. -C. Yi, S. Hong, T. Joo, and M. Kim, J. Phys. Chem. B, 108, 15457-15460 (2004)
王瑞琪,成功大學博士論文,2006
Y. Chen, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire Growth and characterization”, J. Appl. Phys. 84, 3912(1998).
Numerical Data and Functional Relationships in Science and Technology. V.22, Subvolume a. Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds., BerlinSpringer-Verlag, 1987.
Y. Chen, Y Chen, DM Bagnall, H Koh, K Park, K Hiraga, Z Zhu, J. Appl. Phys. 84, 3912(1998).
P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, D. R. Lee, Nanotechnology. 15, 320–323(2004).
F. Liu, P. J. Cao, H. R. Zhang, C. M. Shen, Z. Wang, J. Q. Li, H. J. Gao, J. Cryst. Growth, 274, 126–131(2005).
A. Umar, S.H. Kim, Y. -S. Lee, K.S. Nahm, Y.B. Hahn, J. Cryst. Growth. 282, 131-136(2005).
X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, X. G. Kong, J. Lumin. 99, 149–154(2002)
J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, Adv. Mater. 18, 2720 (2006).
X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, X. G. Kong, J. Lumin. 99, 149–154(2002)
張達欣, 國立中山大學材料科學研究所碩士論文,2008
K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys. 79 (119) 7983
X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, “Photolumine cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films”, Appl. Phys. Lett. 78, 2285 (2001).
Q. P. Wang, D. H. Zhang, Z. Y. Xue, X. J. Zhang, Opt. Mater. 26 23–26 (2004)
T. Monteiro, A. J. Neves, M. C. Carmo, M. J. Soares, M. Peres, E. Alves, E. Rita, U. Wahl, Superlattices Microstruct. 39, 202–210 (2006).
W. Q. Peng, S. C. Qu, G. W. Cong, Z. G. Wang, Mater. Sci. Semicond. Process. 9, 156–159 (2006).
T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, Appl. Phys. Lett. 82, 532 (2003).
A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, V. Muñoz-Sanjosé, J. Appl. Phys. 99, 053516 (2006).
F. Tuomisto,V. Ranki, K. Saarinen, 91, 205502 (2003).
邱文鼎,成功大學碩士論文,2003.
B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 7 (2001)
Peter Klason, Thomas Moe Børseth, Qing X. Zhao, Bengt G. Svensson, Andrej Yu. Kuznetsov, Peder J. Bergman, Magnus Willander, Solid State Communications 145, 321–326, (2008)
D. C. Look, J. W. Hemsky, J. R. Sizelove, Phys. Rev. Lett. 82 2552-2555 (1998).
H. S. Nalwa, Handbook of Thin Film Materials, Volume 3: Ferroelectric and Dielectric Thin Films, Academic Press (2002)
F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, Journal of Applied Physics 102 (8), 083701 (2007).
T. P. Alexander, T. J. Bukowski, D. R. Uhlmann et al, presented at the Applications of Ferroelectrics, (1996). ISAF '96., Proceedings of the Tenth IEEE International Symposium on, (1996).
S. Fujihara, C. Sasaki, and T. Kimura, Journal of the European Ceramic Society 21,10-11, 2109 (2001).
J. Y. Bae, J. Yoo, and G. C. Yi, Appl. Phys. Lett. 89, 173114 (2006).
K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).
M. S. Gudiksen, J. Wang, C. M. Lieber, J. Phys. Chem. B 106, 4036 (2002).
Naoki Ohashi, Naoki Ebisawa, Takashi Sekiguchi, Isao Sakaguchi, Yoshiki Wada,
Tadashi Takenaka, and Hajime Haneda, Applied Physics Letters 86, 091902
s2005d
Y. He, Parmanand Sharma, Krishanu Biswas, E. Z. Liu, Naofumi Ohtsu, A. Inoue, Y. Inada, M. Nomura, J. S. Tse, S. Yin, and J. Z. Jiang , Physical Review B 78, 155202 (2008)
B. P. Zha ng, K. Wakatsuki, N. T. Binh, N. Usami, Y. Segawa, Thin Solid Films. 449, 12–19(2004).
T. Monteiro, M. J. Soares, A. J. Neves, M. C. Carmo, M. Peres, A. Cruz, E. Alves, U. Wahl, E. Rita, V. Munoz-SanJose, J. Zuniga -Perez, Phys. Stat. Sol. (c). 3, 968–971 (2006).
K. Maejima, S. Fujita, Phys. Stat. Sol. (c). 3, 1022–1025 (2006).

Y. Dai, Y. Zhang, Y. Q. Bai, Z. L. Wang, “Bicrystalline zinc oxide nanowires”, Chem. Phys. Lett, 375, 96–101 (2003).
Y. G. Wang, C. Yuen, S. P. Lau, S. F. Yu, B. K. Tay, Chem. Phys. Lett, 377, 329–332 (2003).
W. Lee, M.-C. Jeong, J.-M. Myoung, Nanotechnology,15, 1441–1445 (2004).
K. B. Sundaram, A. Khan, Thin Solid Films, 295, 87 (1997).
D. C. Look, G. M. Renlund, R. H. Burgener II, J. R. Sizelove, Appl. Phys. Lett, 85, 5269 (2004).
D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Appl. Phys. Lett, 81, 1830 (2002).
H. Xu, K. Ohtani, M. Yamao, H. Ohno, Phys. Status Solidi B. 243, 773 (2006).
M. Guo, P. Diao, S. Cai, J. Solid State Chem 178, 1864 (2005).
Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Resschikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys., 98, 041301(2005).
S. Deki, Materials Research Bulletin, 31, 1399-1406 (1996).
X. Chen, G. Wu, and D. Bao, Applied Physics Letters 93 (9), 093501 (2008).
K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Chem. Phys. Lett 409,208 (2005).
C. J. Pan, K. F. Lin, W. T. Hsu, and W. F. Hsieh, J. Appl. Phys 102, 123504 (2007).

C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. T. Lee, Adv.Mater 15, 838 (2003).
Y. C. Wang, Journal of Crystal Growth, 237-239, 564-568 (2002).
P. X. Gao, Y. Ding, and Z. L. Wang,Nano Letters,3 [9], 1315-1320 (2003)
H.J. Fana,, F. Fleischera, W. Leea, K. Nielscha, R. Scholza, M. Zachariasa, U. Göselea, A. Dadgarb, A. KrostbSuperlattices and Microstructures 36, 95–105 (2004)
Bin Xiang, Pengwei Wang, Xingzheng Zhang,Shadi. A. Dayeh, David P. R. Aplin,† Cesare Soci, Dapeng Yu, and Deli Wang,Nano Letters, 7[2] 323-328 (2007)
Gyu-Chul Yi , Miyoung Kim , Stephen J. Pennycook , Adv. Mater, 14 No,24 December 17 (2002)
Min-Chang Jeong, Byeong-Yun Oh, Woong Lee, Jae-Min Myoung,Journal of Crystal Growth 268, 149–154 (2004)
A.Reiser,V.Raeesi,G.M.Prinz,M.Schirra,M.Feneberg,U.Ro¨ der,R.Sauer,K.Thonke, Microelectronics Journal 40, 306–308 (2009)
X.Q. Meng, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lu, Y.C. Liu , X.W. Fan,Chemical Physics Letters 407, 91–94 (2005)
Ahmad Umar, Jong-Pil Jeong, Euk-Kyung Suh and Yoon-Bong Hahn, Korean J. Chem. Eng., 23(5), 860-865 (2006)
A. Umar, Y. B. Hahn, Applied Physics Letters 88, 173120 (2006)
Guozhen Shen, Yoshio Bando, Baodan Liu, Dmitri Golberg, and Cheol-Jin Lee, Adv. Funct. Mater, 16, 410–416 (2006)
Ahmad Umar, S.H. Kim, J.H. Kim, Y.B. Hahn, Materials Letters 62 (2008) 167–171
Wen-Ting Chiou, Wan-Yu Wu, Jyh-Ming Ting,Diamond and Related Materials 12, 1841–1844 (2003)
Hongxing Li, Mingxia Xia, Guozhang Dai, Hongchun Yu, Qinglin Zhang, Anlian Pan, Taihong Wang, Yanguo Wang, and Bingsuo Zou, J. Phys. Chem. 112, 17546–17553 (2008)
Xi-Guang Han, Hui-Zhong He, Qin Kuang, Xi Zhou, Xian-Hua Zhang, Tao Xu, Zhao-Xiong Xie, and Lan-Sun Zheng, J. Phys. Chem. C, 113, 584–589 (2009)
S. Joon Kwon,a_ Jae-Hwan Park, and Jae-Gwan Park,Applied Physic Letters 87, 133112 (2005)
Y. C. Wang, I. C. Leu and M. H. Hon, J. Mater. Chem, 12, 2439–2444 (2002)
X. Ren, C.H. Jiang, D.D. Li, L. He, Materials Letters 62, 3114–3116 (2008)

QR CODE