簡易檢索 / 詳目顯示

研究生: 李建誼
Chien-Yi Li
論文名稱: 半透明大面積有機太陽能電池開發
Development of the Semi-transparent, Large-area Organic Solar Cells
指導教授: 李志堅
Chih-Chien Lee
口試委員: 劉舜維
Shun-Wei Liu
李志堅
Chih-Chien Lee
范慶麟
Ching-Lin Fan
張志豪
Chih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 58
中文關鍵詞: 半透明有機太陽能電池大面積最大功率
外文關鍵詞: Semi-transparent organic solar cell, Large-area, Maximum power
相關次數: 點閱:163下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為開發大面積半透明有機太陽能電池 (Semi-transparent large area organic solar cell),首先我們使用銦錫氧化物 (Indium Tin Oxides, ITO)當作陽極和8 nm的銅銀合金當作透明陰極,再使用吸收近紅外光的NTUST-Donor作為主動層的予體材料和C60作為受體混和沉積成主動層,並使用C60/NTUST-Buffer:C60作為介面修飾層和阻擋層。
    我們先在有效面積0.04 cm2的元件中測試出最佳有機層厚度,我們使用3 nm單層C60當作介面修飾層,因為增加C60的厚度雖然會增加光電流,但同時也會吸收過量波長450 nm的可見光,因此為了達到更高的平均可見光穿透率 (average visible transmittance, AVT),我們亦優化了NTUST-Buffer:C60的厚度和比例,最終我們優化後的元件結構為ITO/MoO3 (15 nm)/NTUST-Donor:C60 (1:3 30 nm)/C60 (3 nm)/NTUST-Buffer:C60 (2:1 10 nm)/Cu:Ag (8 nm)/WO3 (30 nm)
    接著我們將此結構實現於大面積的ITO陽極基板上,製作出具有10 cm2的半透明有機太陽能電池,以玻璃和ALD進行封裝後分別可達到1.07 %和0.76 %的效率,且PMax分別為10.70 mW和7.51 mW。此研究驗證了有機太陽能電池在大面積開發的發展性,也因為半透明和大面積的優勢,使有機太陽能電池可以被更廣泛的使用在各種裝置上。


    In this paper, we use Indium Tin Oxides (ITO) as the anode and 8 nm copper-silver alloy as the transparent cathode to develop a semi-transparent large area organic solar cell. Then, we used NTUST-Donor, which absorbs near-infrared light, as the active layer donor material and C60 as the acceptor to mix and deposit the active layer, and used C60/NTUST-Buffer:C60 as the interface modification layer and blocking layer.
    We first measured the optimal thickness of the organic layer in a 0.04 cm2 effective area and used a single layer of C60 at 3 nm as the interface modification layer because increasing the thickness of C60 increases the photocurrent but also absorbs excessive wavelengths of visible light at 450 nm. Therefore, in order to achieve higher average visible transmittance (AVT), we also optimized the thickness and ratio of NTUST-Buffer:C60, and the final optimized component structure is ITO/MoO3 (15 nm)/NTUST-Donor:C60 (1:3 30 nm)/C60 (3 nm)/NTUST-Buffer: C60 (2:1 10 nm)/Cu:Ag (8 nm)/WO3 (30 nm)
    We then implemented this structure on a large-area ITO anode substrate and fabricated a 10 cm2 translucent organic solar cell with 1.07 % and 0.76 % efficiency and 10.70 mW and 7.51 mW PMax after packaging with glass and ALD, respectively, to verify the development of organic solar cells in large-area applications. The translucent and large-area advantages of organic solar cells allow them to be more widely used in various devices.

    致謝 I 中文摘要 II Abstract III 目錄 IV 圖索引 VII 表索引 IX 第1章 緒論 1 1.1 前言 1 1.2 太陽能電池發展簡介 2 1.3 有機太陽能結構 3 1.3.1 平面單層結構 3 1.3.2 雙層異質接面結構 4 1.3.3 混和異質接面結構 5 1.3.4 平面式混合異質接面結構 6 第2章 研究動機與文獻探討 7 第3章 基礎理論 11 3.1 有機太陽能電池原理 11 3.1.1 吸收光能 11 3.1.2 激子擴散 11 3.1.3 拆解激子 12 3.1.4 收集電荷 12 3.2 有機太陽能電池等效電路 14 3.3 太陽能電池特性 15 3.3.1 開路電壓 (Open circuit voltage, VOC) 15 3.3.2 短路電流密度 (Short circuit current density, JSC) 16 3.3.3 填充因子 (Fill factor, FF) 16 3.3.4 功率轉換效率 (Power conversion efficiency, PCE) 16 3.3.5 串聯電阻 (RS)與並聯電阻 (RSh) 16 3.4 原子層沉積原理 17 第4章 實驗架構 18 4.1 實驗設備及量測儀器 18 4.1.1 超音波震盪機 18 4.1.2 溫控加熱板 18 4.1.3 旋轉塗佈機 18 4.1.4 紫外線曝光機 19 4.1.5 真空材料純化系統 19 4.1.6 原子沉積系統 19 4.1.7 高真空熱蒸鍍系統 20 4.1.8 氮氣手套箱 21 4.1.9 階梯式薄膜厚度量測系統 22 4.1.10 四點式阻抗量測系統 23 4.1.11 太陽光模擬系統 23 4.1.12 外部量子效率量測系統 23 4.2 實驗前準備 25 4.2.1 基板圖案設計 25 4.2.2 雷射雕刻 26 4.2.3 黃光微影 26 4.2.4 材料純化 26 4.3 實驗步驟 27 4.3.1 ITO基板清洗 27 4.3.2 真空熱蒸鍍沉積 27 4.3.3 玻璃封裝製程 27 4.3.4 原子沉積封裝製程 27 4.4 量測分析 28 4.4.1 元件薄膜特性 28 4.4.2 元件光電特性 28 4.4.3 元件外部量子效率 28 4.4.4 元件壽命特性 28 第5章 結果與討論 29 5.1 有機薄膜特性 29 5.2 標準元件特性 30 5.2.1 BCP和NTUST-Buffer結構測試 30 5.2.2 主動層比例測試 31 5.3 半透明電極元件特性 32 5.3.1 透明陰極測試 32 5.3.2 阻擋層結構測試 32 5.3.3 單層C60厚度變化 33 5.3.4 主動層比例改善 34 5.3.5 阻擋層比例與厚度變化 35 5.3.6 長時間穩定性測試 36 5.4 大面積半透明元件特性 38 5.4.1 大面積半透明元件阻擋層鍍率調整 38 5.4.2 ITO電阻值調整與大面積元件再現性測試 39 5.4.3 大面積半透明元件穿透度 40 第6章 結論與未來展望 41 參考文獻 42

    [1] Frobel, M., et al., (2018). Three-terminal RGB full-color OLED pixels for ultrahigh density displays. Sci Rep, 8(1), 9684.
    [2] Wei, Q., et al., (2018). Small-Molecule Emitters with High Quantum Efficiency: Mechanisms, Structures, and Applications in OLED Devices. Advanced Optical Materials, 6(20).
    [3] Baek, S.Y., et al., (2020). Ancillary ligand increases the efficiency of heteroleptic Ir-based triplet emitters in OLED devices. Nat Commun, 11(1), 2292.
    [4] Zou, Y., et al., (2005). 7.9% efficient vapor-deposited organic photovoltaic cells based on a simple bulk heterojunction. Journal of Materials Chemistry A, 2014. 2(31).
    [5] Song, Q.L., et al., (2005). Small-molecule organic solar cells with improved stability. Chemical Physics Letters, 416(1-3), 42-46.
    [6] Fukuda, K., K. Yu, and T. Someya, (2020). The Future of Flexible Organic Solar Cells. Advanced Energy Materials, 10(25).
    [7] Yang, C., et al., (2020). High‐Performance Near‐Infrared Harvesting Transparent Luminescent Solar Concentrators. Advanced Optical Materials, 8(8).
    [8] Li, Y., et al., (2017). High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells. J Am Chem Soc, 139(47), 17114-17119.
    [9] C. E. Fritts., (1883). On a new form of selenium cell and some electrical discoveries made by its use. American Journal of Science December, s3-26 (156), 465-472.
    [10] Ross, M., et al., (2020). Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer. ACS Appl Mater Interfaces, 12(35), 39261-39272.
    [11] Niu, Z., et al., (2020). A cation-regulation strategy for achieving high-performance perovskite solar cells via a fully-evaporation process. Organic Electronics, 82.
    [12] E. Becquerel., (1839). Compt. rend, 9, 561.
    [13] Fritts, C. E., (1883). On a new form of selenium cell, and some electrical discoveries made by its use. Am. J. Sci, 26, 465-472.
    [14] Chapin, D.M., C.S. Fuller, and G.L. Pearson, (1954). A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 25(5), 676-677.
    [15] Kearns, D., & Calvin, M., (1958). Photovoltaic effect and photoconductivity in laminated organic systems. The Journal of chemical physics, 29(4), 950-951.
    [16] Tang, C. W., & Albrecht., A. C., (1957). Photovoltaic effects of metal-chlorophyll-a-metal sandwich cells. The Journal of chemical physics, 62(6), 2139-2149.
    [17] Chamberlain, G. A., (1983). Organic solar cells: A review. Solar cells, 8(1), 47-83
    [18] Tang, C. W., (1986). Two layer organic photovoltaic cell. Applied physics letters, 48(2), 183-185.
    [19] Peumans, P., Bulovi, V., & Forrest, S. R., (2000). Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Applied Physics Letters, 76(19), 2650-2652.
    [20] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J., (1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270(5243), 1789-1791.
    [21] Uchida, S., et al., (2004). Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer. Applied Physics Letters, 84(21), 4218-4220.
    [22] Peumans, P., V. Bulović, and S.R. Forrest, (2000). Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Applied Physics Letters, 76(19), 2650-2652.
    [23]Xue, J., et al., (2005). A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell. Advanced Materials, 17(1), 66-71.
    [24]Rand, B.P., et al., (2005). Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. I. Material properties. Journal of Applied Physics, 2005. 98(12).
    [25]Xue, J., et al., (2005). Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performance. Journal of Applied Physics, 98(12).
    [26]Wu, H., et al., (2013). A transparent electrode based on a metal nanotrough network. Nat Nanotechnol, 8(6), 421-5.
    [27]Li, Y., et al., (2020). Color-neutral, semitransparent organic photovoltaics for power window applications. Proc Natl Acad Sci USA,117(35), 21147-21154.
    [28]Li, Y., et al., (2017). High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells. J Am Chem Soc, 139(47), 17114-17119.
    [29]Liu, F., et al., (2017). Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-Bandgap Electron Acceptor. Adv Mater, 29(21).
    [30] Li, Y., et al., (2019). High Efficiency Semi Transparent Organic Photovoltaics. IEEE 46th Photovoltaic Specialists Conference, 98-100.
    [31] Burlingame, Q., et al., (2019). Intrinsically stable organic solar cells under high-intensity illumination. Nature, 573(7774), 394-397.
    [32] Li, M., et al., (2020). Vacuum‐Deposited Transparent Organic Photovoltaics for Efficiently Harvesting Selective Ultraviolet and Near‐Infrared Solar Energy. Solar RRL, 3(5), 2000564.
    [33] Hill, I. G., Kahn, A., Soos, Z. G., & Pascal Jr, R. A., (2000). Charge-separation energy in films of π-conjugated organic molecules. Chemical Physics Letters, 327(3-4), 181-188.
    [34] Knupfer, M., (2003). Exciton binding energies in organic semiconductors. Applied Physics A, 77(5), 623-626.
    [35] Leckner, B., (1978). The spectral distribution of solar radiation at the earth's surface-elements of a model. Solar energy, 20(2), 143-150.
    [36] Rim, S. B., Fink, R. F., Schoneboom, J. C., Erk, P., & Peumans, P., (2007). Effect of molecular packing on the Exciton diffusion length in organic solar cells. Applied Physics Letters, 91(17), 173504.
    [37] Ohkita, H., Cook, S., Astuti, Y., Duffy, W., Tierney, S., Zhang, W., ... & Durrant, J. R., (2008). Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. Journal of the American Chemical Society, 130(10), 3030-3042.
    [38] Blom, P. W., Mihailetchi, V. D., Koster, L. J. A., & Markov, D. E., (2007). Device physics of polymer: fullerene bulk heterojunction solar cells. Advanced Materials, 19(12), 1551-1566.
    [39] Bredas, J. L., Norton, J. E., Cornil, J., & Coropceanu, V., (2009). Molecular understanding of organic solar cells: the challenges. Accounts of chemical research, 42(11), 1691-1699.
    [40] Peumans, P., Yakimov, A., & Forrest, S. R., (2003). Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 93(7), 3693-3723.
    [41] Jannat, A., Rahman, M. F., & Khan, M. S. H., (2013). A review study of organic photovoltaic cell. International Journal of Scientific & Engineering Research, 4(1), 1-6.
    [42] Li, N., Lassiter, B. E., Lunt, R. R., Wei, G., & Forrest, S. R., (2009). Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells. Applied Physics Letters, 94(2), 13.
    [43] Rand, B. P., Genoe, J., Heremans, P., & Poortmans, J., (2007). Solar cells utilizing small molecular weight organic semiconductors. Progress in Photovoltaics: Research and Applications, 15(8), 659-676.
    [44] Kulshreshtha, C., Choi, J. W., Kim, J. K., Jeon, W. S., Suh, M. C., Park, Y., & Kwon, J. H., (2011). Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells. Applied Physics Letters, 99(2), 136.
    [45] Rand, B. P., Burk, D. P., & Forrest, S. R., (2007). Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Physical Review B, 75(11), 115327.
    [46] Chopra, K. L., Paulson, P. D., & Dutta, V., (2004). Thin-film solar cells: an overview. Progress in Photovoltaics: Research and applications, 12(2-3), 69-92.
    [47] Qi, B., & Wang, J., (2013). Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 15(23), 8972-8982.
    [48] Markku Leskelä, Mikko Ritala, (2002). Atomic layer deposition from precursors to thin film structures. Thin Solid Films, 409(1), 138-146,
    [49] van Hemmen, J.L., et al., (2007). Plasma and Thermal ALD of Al2O3 in a Commercial 200 mm ALD Reactor. Journal of The Electrochemical Society, 154(7).
    [50] Triyoso, D., et al., (2004). Impact of Deposition and Annealing Temperature on Material and Electrical Characteristics of ALD HfO2. Journal of The Electrochemical Society, 151(10).
    [51] Xu, J., et al., (2018). Effects of HfO2 encapsulation on electrical performances of few-layered MoS2 transistor with ALD HfO2 as back-gate dielectric. Nanotechnology, 29(34), 345201.

    QR CODE