簡易檢索 / 詳目顯示

研究生: Muhammad Yusuf Fakhri
Muhammad Yusuf Fakhri
論文名稱: 二硫化錸奈米結構之由表面主導電傳輸特性研究
Electronic Transport and Surface-controlled Conductivities in Rhenium Disulfide Nanostructures
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 傅祖怡
Tsu-Yi Fu
邱博文
Po-Wen Chiu
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 71
中文關鍵詞: Two-Dimensional MaterialsTransition Methal DichalcogenidesRhenium DisulfidesSemiconductor NanostructuresElectronic Transport PropertiesSurface-controlled Characterizations
外文關鍵詞: Two-Dimensional Materials, Transition Methal Dichalcogenides, Rhenium Disulfides, Semiconductor Nanostructures, Electronic Transport Properties, Surface-controlled Characterizations
相關次數: 點閱:411下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

過渡性金屬硫族化合物二硫化錸為二維層狀材料,其晶體結構為具有結構異向性的三斜晶系(triclinic structure, 1T)。在過去的研究中,發現平行b晶軸方向之電導率高於垂直b軸,因此在電子元件、光電元件和能源材料之應用具有潛在優勢。本研究以化學氣相傳輸法成長晶體,藉由X光繞射和拉曼量測,證實為高品質的二硫化錸單晶。由文獻可知,過渡性金屬硫族化合物在奈米結構中,存在表面主導電傳輸的特性,因此若能了解其材料本質的特性,就能進一步控制其電傳輸。為了解二硫化錸表面電子結構,利用機械剝離法將晶體原有表面移除,量測內部的新鮮表面(fresh surface),再透過掃描穿隧顯微鏡和角度解析光電子能譜來分析,結果發現其費米能階接近導帶邊緣,表示fresh surface具有很高的電子濃度。而在角度解析光電子能譜分析中也顯示fresh surface隨者環境變化,其費米能階偏移不大,說明此表面特性是很穩定的。除此之外,藉由變溫場效應電晶體的量測證實了表面具有很強散射和金屬性行為。最後,綜合以上量測結果,說明了二硫化錸具有表面主導電傳輸的特性是由於表面有大量的電子聚集,使表面存在很高的電子濃度。


Rhenium disulfide (ReS2), one of transition metal dichalcogenides (TMDCs) and two-dimensional or layered materials, is known to exhibit anisotropic properties due to the reduced symmetry from distorted 1T structural phase. The electronic transport properties from its anisotropy show that the conductivity parallel to the b-axis is higher than that normal to the b-axis. This inherent structural fundamental from ReS2 has become its potential benefits for electronic device application. In addition, many articles have also reported its application for optoelectronic device, energy storage, and solar cell. The high-quality ReS2 crystals grown by chemical vapor transport (CVT) using chlorine (Cl2) as the transport agent has been achieved and characterized by X-ray diffraction (XRD) and Raman spectroscopy. Because the nanostructure in TMDCs can emerge the hidden characteristics from the surface, observing its intrinsic properties should consider the control to the apparent properties. In this study, the surface of ReS2 was analyzed by two surface electronic measurement: scanning tunneling spectroscopy (STS) and angle resolved photoemission spectroscopy (ARPES). The fresh surface achieved by mechanical exfoliation introduced the occurrence of high electron density from the electronic band structure pinning the conduction band edge near the fermi level position. The other clarification with ARPES shown the small change of electronic band energy after exposing the freshly exfoliated surface in ambient environment. The stability from this ambient influence suggested the presence of high electron concentration in the fresh surface of ReS2. In addition to this study, the field effect transistor (FET) device and temperature dependence measurement were performed to explain the scattering and metallic behavior in ReS2. The FET configuration of ReS2 nanoflake results the high concentration of ReS2 nanostructure, explained on its two-dimensional transport behavior. The high calculated electron concentration from both electrical measurement and electronic structure characterizations indicated the presence of surface electron accumulation in ReS2.

Chapter I – INTRODUCTION 1 1.1 The past, present, and future of 2D Material Research 1 1.2 Semiconducting Properties in Transition Metal Dichalcogenides 3 1.3 The Fundamental of Rhenium Disulfide 5 1.3.1 The Crystal and Electronic Structure of ReS2 5 1.3.2 The Anisotropy in ReS2 8 1.3.3 The Future Application of ReS2 10 1.4 The Background and Motivation from this ReS2 Research 11 1.4.1 The Effect of Defect for TMDC 11 1.4.2 The Surface State in Semiconductor 13 Chapter II – EXPERIMENTAL DETAILS AND METHODOLOGY 16 2.1 Crystal Growth and Material Characterizations 16 2.1.1 Chemical Vapor Transport (CVT) 16 2.1.2 X-Ray Diffraction (XRD) 17 2.1.3 Raman Scattering Spectroscopy 18 2.2 ReS2 Device Fabrication and Characterization 19 2.2.1 Bulk Device Preparation 19 2.2.2 Nanoflake Device Preparation 20 2.3 Semiconductor Characterization and Electrical Measurement 24 2.3.1 Current-Voltage Measurement 25 2.3.2 Field Effect Transistor Measurement 26 2.3.3 Temperature Dependent Measurement 27 2.4 Electronic Structure Measurement Systems 28 2.4.1 Scanning Tunneling Microscope (STM) and Spectroscopy (STS) 28 2.4.2 Angle Resolved Photoemission Spectroscopy (ARPES) 30 Chapter III – RESULT AND DISCUSSION 32 3.1 Material and Device Characterizations 32 3.1.1 XRD and Raman Spectra of ReS2 32 3.1.2 ReS2 Nanoflake Device Characterizations 34 3.2 The Electrical and Two-Dimensional (2D) Transport Properties of ReS2 37 3.2.1 The Electrical Conductivity of ReS2 37 3.2.2 The Electrical Anisotropy of ReS2 38 3.2.3 The Thickness Dependent Conductivity in ReS2 40 3.2.4 Transfer Length Method (TLM) Analysis for 2D Transport Behavior 44 3.3 Electronic Properties of Pristine (Non-fresh) and Fresh ReS2 Surface 47 3.3.1 Electronic Properties and Carrier Concentration from STS 47 3.3.2 Electronic Structure and Binding Energy Spectra from ARPES 51 3.4 Field Effect Transistor (FET) Measurement Analysis 53 3.4.1 The Mobility Measurement and ReS2 Nanoflake Electron Concentration 53 3.4.2 The Temperature Dependent Mobility Analysis 56 3.4.3 Metallic and Semiconducting Behavior in ReS2 59 Chapter IV – CONCLUSION AND FUTURE WORK 63 4.1 Conclusion 63 4.2 Future Work 64 Reference 66

1. Arar, S. Everything you need to know about the future of graphene. https://www.allaboutcircuits.com/news/everything-you-need-to-know-about-the-future-of-graphene/, accessed on 1st June 2018.
2. Lee, J., Shin, J. H., Lee, G. H. & Lee, C. H. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures. Nanomaterials 6, 193 (2016).
3. Lacopi, F., Boeckl, J. J., and Jagadish, C. 2D Materials. Academic Press, (2016).
4. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photonics 8, 899–907 (2014).
5. Gibney, E. 2D or not 2D. Nature 522, 274–276 (2015).
6. Bertolazzi, S., Krasnozhon, D. & Kis, A. Terms of Use Nonvolatile Memory Cells Based on. ACS Nano 3246–3252 (2013).
7. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology 7, 699–712 (2012).
8.Dragoman, M. 2D Nanoelectronics. Springer Nature, (2017).
9. Ho, C.-H. Optical study of the structural change in ReS2 single crystals using polarized thermoreflectance spectroscopy. Optics Express 13, 222–226 (2005).
10. Rahman, M., Davey, K. & Qiao, S. Z. Advent of 2D Rhenium Disulfide (ReS2): Fundamentals to Applications. Advanced Functional Materials 27, (2017).
11. Qin, J.-K., Shao, W.-Z., Xu, C.-Y., Ren, D.-D., Song, X.-G., Zhen, L. van der Waals epitaxy of large-area continuous ReS2 films on mica substrate. RSC Advances 7, 24188–24194 (2017).
12. Hafeez, M., Gan, L., Li, H., Ma, Y. & Zhai, T. Large-Area Bilayer ReS2 Film/Multilayer ReS2 Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors. Advanced Functional Matererials 26, 4551–4560 (2016).
13. Wu, K., Chen, B., Yang, S., Wang, G., Kong, W., Cai, H., Aoiki, T., Soignard, E., Marie, X., Yano, A., Suslu, A., Urbaszek, B., Tongay, S. Domain Architectures and Grain Boundaries in Chemical Vapor Deposited Highly Anisotropic ReS2 Monolayer Films. Nano Letters 16, 5888–5894 (2016).
14. Tongay, S., Sahin, H., Ko, C., Luce, A., Fan, W., Liu, K., Zhou, J., Huang, Y.-S., Ho, C.-H., Yan, J., Ogletree, D.F., Aloni, S., Ji, J., Li, S., Li, J., Peeters, F.M., Wu, J. Monolayer behavior in bulk ReS2 due to electronic and vibrational decoupling. Nature Communications 5, 1–6 (2014).
15. Zhang, E. ReS2-Based Field-Effect Transistors and Photodetectors. Advanced Functional Matterials 25, 4076–4082 (2015).
16. Friemelt, K., Lux-Steiner, M. C. & Bucher, E. Optical properties of the layered transition-metal-dichalcogenide ReS2: Anisotropy in the van der Waals plane. Journal of Applied Physics 74, 5266–5268 (1993).
17. Lin, D. Y., Huang, T.P., Wu, F.L., Lin, C.M., Huang., Y.S., Tiong, K.K. Anisotropy of Photoluminescence in Layered Semiconductors ReS2 and ReS2:Au. Solid State Phenomena 170, 135–138 (2011).
18. Chenet, D. A., Aslan, O.B., Huang, P.Y., Fan, C., Zande, A.M.v.d., Heinz, T.F., Hone, J.C. In-Plane Anisotropy in Mono- and Few-Layer ReS2 Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy. Nano Letters 15, 5667–5672 (2015).
19. Ho, C. H., Huang, Y. S., Tiong, K. K. & Liao, P. C. In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. Journal of Physics: Condensed Matter 11, 5367–5375 (1999).
20. Liu, E. Fu, Y., Wang, Y. Feng, Y., Liu, H., Wan, X., Zhou, W., Wang, B., Shao, L., Ho, C.-H., Huang, Y.S., Cao, Z., Wang, L., Li, A., Zeng, J., Song, F., Wang, X., Shi, Y., Yuan, H., Hwang, H.Y., Miao, F., Xing, D. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nature Communications 6, 1–7 (2015).
21. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences 102, 10451–10453 (2005).
22. Qin, J. K., Ren, D.-D., Shao, W.-Z., Li, Y., Miao, P., Sun, Z.-Y., Hu, P., Zhen, L., Xu, C.-Y. Photoresponse Enhancement in Monolayer ReS2 Phototransistor Decorated with CdSe-CdS-ZnS Quantum Dots. ACS Applied Material Interfaces 9, 39456–39463 (2017).
23. Shim, J., Oh, A., Kang, D.-H., Oh, S., Jang, S.K., Jeon, M.H., Kim, M., Choi, C., Lee, J., Lee, S., Yeom, G.Y., Song, Y.J., Park, J.-H. High-Performance 2D Rhenium Disulfide (ReS2) Transistors and Photodetectors by Oxygen Plasma Treatment. Advanced Functional Materials 28, 6985–6992 (2016).
24. Zhang, Q. Tan, S., Mendes, S.G., Sun, Z., Chen, Y., Kong, X., Xue, Y., Rummeli, M.H., Wu, X., Chen, S., Fu, L. Extremely Weak van der Waals Coupling in Vertical ReS2 Nanowalls for High-Current-Density Lithium-Ion Batteries. Advanced Functional Materials 28, 2616–2623 (2016).
25. Zhou, W., Zou, X., Najmei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., Idrobo, J.C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Letters 13, 2615–2622 (2013).
26. Lin, Z. Carvalho, B.R., Kahn, E., Lv, R., Rao, R., Terrones, H., Pimenta, M.A., Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. IOP 2 Materials 3, (2016).
27. Terrones, H. Corro, E.D., Feng, S., Poumirol, J.M., Rhodes, D., Smirnov, D., Pradhan, N.R., Lin, Z., Nguyen, M.A.T., Elias, A.L., Mallok, T.E., Balicas, L., Pimenta, M.A., Terrones, M. New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides. Scientific Reports 4, 1–9 (2014).
28. Zan, R. Ramasse, Q.M., Jalil, R., Georgiu, T., Bangert, U., Novoselov, K. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167–10174 (2013).
29. Davis, S. M. & Carver, J. C. Oxygen chemisorption at defect sites in MoS2 and ReS2 basal plane surfaces. Applied Surface Science 20, 193–198 (1984).
30. Xu, K., Deng, H.X., Wang, Z., Wang, F., Li, S.S., Luo, J.W., He, J. Sulfur vacancy activated field effect transistors based on ReS2 nanosheets. Nanoscale 7, 15757–15762 (2015).
31. Zhang, Z. & Yates, J. T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chemical Review 112, 5520–5551 (2012).
32. Luth H. Solid Surfaces, Interfaces and Thin Films. 6th Ed. Springer, New York (2015)
33. Mahboob, I. Veal, T.D., Piper, L.F.J., McConville, C.F. Origin of electron accumulation at wurtzite InN surfaces. Physical Review B - Condensed Matter and Materials Physics 69, 1–4 (2004).
34. Noguchi, M., Hirakawa, K. & Ikoma, T. Intrinsic electron accumulation layers on reconstructed clean InAs(100) surfaces. Physical Review Letters 66, 2243–2246 (1991).
35. King, P. D. C. Veal, T.D., Fuchs, F., Wang, C.Y., Payne, D.J., Bourlange, A., Zhang, H., Bell, G.R., Cimalia, V., Ambacher, O., Egdell, R.G., Bechstedt, F., McConville, C.F. Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Physical Review B - Condensed Matter and Materials Physics 79, 1–10 (2009).
36. Colakerol, L. Veal, T.D., Jeong, H.-K., Plucinski, L., DeMasi, A., Learmonth, T., Glans, P., Wang, S., Zhang, Y., Piper, L.F.J., Jefferson, P.H., Fedorov, A., Chen, T.-C., Moustakas, T.D., McConville, C.F., Smith, K.E. Quantized electron accumulation states in indium nitride studied by angle-resolved photoemission spectroscopy. Physical Review Letters 97, 8–11 (2006).
37. Siao, M. D. Shen, W.C., Chen, R.S., Chang, Z.W., Shih, M.C., Chiu, Y.P., Cheng, C.-M. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nature Communications 9, 1442 (2018).
38. Neaman, D. A. Semiconductor Physics and Device. 3rd Edition. McGraw Hill, Singapore (2003).
39. Myhra, S. Surface and Interface Analysis. 2nd Edition. CRC Press, Boca Raton (2009).
40. Hofer, W. A., Foster, A. S. & Shluger, A. L. Theories of scanning probe microscopes at the atomic scale. Reviews of Modern Physics 75, 1287–1331 (2003).
41. S. Rauschenbach, M. Ternes, L. Harnau & K. Kern. Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules. Annual Review of Analytical Chemistry 9, 16.1–16.26 (2016).
42. Lüth H. Surfaces and Interfaces of Solid Materials. 3rd Ed. Springer, Berlin, (1995).
43. Mancini, F. Strongly Correlated System. Springer, Heidelberg, (2015).
44. Zhang, W. Photoemission Spectroscopy on High Temperature Superconductors. Springer, Berkeley, (2013).
45. Moore, D. M. and R. C. Reynolds, Jr. X-Ray diffraction and the identification and analysis of clay minerals. 2nd Ed. Oxford University Press, New York, (1997).
46. Cullity, B. D., Stock, S. R. Elements of X-ray diffraction. Prentice Hall, New Jersey, (2001).
47. https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/d2-phaser/overview.html, accessed on 6th June 2018.
48. Javier, J. An Introduction to Raman Spectroscopy: Introduction and Basic Principles.
http://www.spectroscopynow.com/details/education/sepspec1882education/An-Introduction-to-Raman-Spectroscopy-Introduction-and-Basic-Principles.html, accessed on 1st July 2014.
49. http://www.protrustech.com/en/product_detail.php?id=97 , accessed on 6th June 2018.
50. Dumcenco, D. O., Huang, Y. S., Liang, C. H. & Tiong, K. K. Optical characterization of niobium-doped rhenium disulphide single crystals. Journal of Applied Physics 102, (2007).
51. Tseng, A. A. Recent developments in nanofabrication using focused ion beams. Small 1, 924–939 (2005).
52. Chen, R.-S., Tang, C.-C., Shen, W.-C. & Huang, Y.-S. Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers. Nanotechnology 25, 415706 (2014).
53. Huang, Y. H., Peng, C. C., Chen, R. S., Huang, Y. S. & Ho, C. H. Transport properties in semiconducting NbS2 nanoflakes. Applied Physical Letters 105, 093106 (2014).
54. Huang, Y. H., Chen, R. S., Zhang, J. R. & Huang, Y. S. Electronic transport in NbSe2 two-dimensional nanostructures: semiconducting characteristics and photoconductivity. Nanoscale 7, 18964–18970 (2015).
55. Shen, W.-C., Chen, R.-S. & Huang, Y.-S. Photoconductivities in MoS2 Nanoflake Photoconductors. Nanoscale Research Letters 11, 124 (2016).
56. Park, J. Y. Joe, H. E., Yoon, H. S., Yoo, S. H., Kim, T., Kang, K., Min, B. K., Jun, S. C., Contact Effect of ReS2/Metal Interface. ACS Applied Materials Interfaces 9, 26325–26332 (2017).
57. Yu, Z. G., Cai, Y. & Zhang, Y. W. Robust Direct Bandgap Characteristics of One-and Two-Dimensional ReS2. Scientific Reports 5, 1–9 (2015).
58. Ovchinnikov, D., Gargiulo, F., Allain, A., Pasquier, D. J., Dumcenco, D., Ho, C. H., Yazyev, O. V. & Kis, A., Disorder engineering and conductivity dome in ReS2 with electrolyte gating. Nature Communications 7, 1–7 (2016).
59. Gao, J., Li, B., Tan J., Chow, P., Lu, T. M. & Koratkar, N. Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano 10, 2628–2635 (2016).
60. Kasap, S. O., Principles of Electronic Materials and Devices. McGraw Hill (2001).
61. Dumcenco, D. O., Huang, Y. S., Liang, C. H. & Tiong, K. K. Optical characterization of niobium-doped rhenium disulphide single crystals. Journal of Applied Physics 102, (2007).
62. http://www.ajaint.com/what-is-e-beam-evaporation.html, accessed on 18th June 2018.
63. Lin, C. H., Electronic Transport Properties in ReS2 Two-Dimensional Nanostructures. NTUST Master Thesis, (2016).
64. Saad, M. M., Abdallah, T., Negm, S. & Talaat, H. Interfacial band bending in Au-tipped Cd-chalcogenides hybrid nanostructures. Superlattices Microstructures 88, 62–71 (2015).

QR CODE