簡易檢索 / 詳目顯示

研究生: 陳薇婷
Wei-Ting Chen
論文名稱: 開發雙極異質薄膜實現超高性能蒸騰驅動產電
Bipolar Heterogeneous Membranes for Transpiration-Driven Power Generation with Ultrahigh Performance
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 童國倫
Kuo-Lun Tung
劉偉仁
Wei-Ren Liu
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: 離子傳輸電動能源轉換毛細作用蒸騰作用水驅動能源產生器聚電解質二維材料
外文關鍵詞: Ion transport, Electrokinetic energy conversion, Capillary action, Transpiration, Water-enabled power generator, Polyelectrolyte, Two dimensional material
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今環境汙染與能源危機已成為全球熱議的話題,隨著碳中和目標的提出,發展綠色能源成為迫在眉睫的需求。過去幾年,電動能源轉換的概念被提出,透過外界壓力驅使流體通過表面帶電通道進而產生能源,卻因轉換效率低(< 5%)而受限於實際應用。在這裡,我們設計一種雙極異質薄膜,該薄膜結合二维石墨烯及兩種雙極聚電解質(聚苯乙烯磺酸鈉(PSS)和聚賴氨酸(PLL)),在導電二維石墨烯的幫助下,兩種帶有空間電荷之聚電解質可作為高速離子傳輸層。此外,不對稱的電荷設計不僅可以通過膜誘導電荷分離且具有離子整流的特性,藉此來達到高效的電動能源轉換。當滴上0.3 ml去離子水溶液於薄膜一端時能產生高達0.74 V的開路電壓和32 μA的短路電流且發電時間可長達4小時。最後我們使用上述蒸騰驅動發電裝置來啟動商業用計算機和點亮不同顏色之LED,此種設計概念不僅可以成為下一世代自發性電動能源產生裝置的強大基礎,也可以大幅提高電動能源轉換效率,在未來應用上勢必具有無限的潛力。


    Nowadays environmental pollution and energy crisis have become the talk of the town. With the global “carbon neutrality” goal being proposed, the development of renewable energy has become the trend. Over the past one decade, the concept of the electrokinetic energy conversion (EKEC), where the energy can be generated by the pressure-driven flow of solution through charge channels, has emerged. However, the low EKEC efficiency (< 5%) limits its practical applications. Herein, we develop a layer-by-layer bipolar heterogeneous membrane, composed of a two-dimensional (2D) graphene and two types of bipolar polyelectrolytes (i.e., poly(sodium 4-styrenesulfonic) (PSS) and poly-L-lysine (PLL)), for highly efficient transpiration-driven EKEC. Both the polyelectrolytes with space charges are utilized as the high-speed ion transport layers, with the help of the conductive 2D graphene. Moreover, the design of asymmetric bipolar charges can induce charge separation through the membrane as well as ionic rectification, both of which are capable of enhancing the energy generation efficiency. As a result, a high open-circuit voltage of ~0.74 V, a high short-circuit current of ~32 A, along with a significantly amplified power generation time (> 4 hr) can be achieved by dropping 0.3 mL pure deionized water onto the membrane. The use of the developed transpiration-driven power generator in powering electronics such as LEDs and commercial calculator is also demonstrated. This study is not only of fundamental significance for boosting EKEC efficiency but also paves a new avenue towards water-enabled sustainable energy generator.

    中文摘要 II Abstract V 致謝 VI 目錄 VII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.3研究動機 12 第二章 原理機制 14 2.1 電雙層 14 2.2 離子電流整流效應 15 2.3 電動現象 17 2.4 電動能源轉換 18 第三章 實驗裝置與流程 22 3.1 實驗藥品 22 3.2 實驗製備裝置 23 3.3 實驗製備流程 24 3.4 實驗架設 26 3.5 材料分析儀器 27 第四章 結果與討論 31 4.1石墨烯材料性質分析 31 4.1.1 拉曼光譜分析(Raman spectroscopy) 31 4.1.2 掃描式電子顯微鏡分析 (SEM) 31 4.1.3 原子力顯微鏡分析 (AFM) 31 4.1.4 界面電位分析 (Zeta potential) 32 4.2 雙極異質薄膜材料性質分析 32 4.2.1 掃描式電子顯微鏡分析 (SEM) 32 4.2.2 傅立葉紅外線光譜分析(FTIR) 33 4.2.3 接觸角分析 (Contact angle) 32 4.3 雙極異質薄膜之產電效能實驗結果分析 33 4.3.1 雙極異質薄膜之離子整流 33 4.3.2 導電材料對於雙極異質薄膜影響之實驗驗證 33 4.3.3 聚電解質塗布比例對於雙極異質薄膜影響之實驗驗證 34 4.3.4 溶液滴入方向對於雙極異質薄膜影響之實驗驗證 34 4.3.5 滴水量對於雙極異質薄膜影響之實驗驗證 34 4.3.6 長度對於雙極異質薄膜影響之實驗驗證 35 4.3.7 寬度對於雙極異質薄膜影響之實驗驗證 35 4.3.8 鹽溶液對於雙極異質薄膜影響之實驗驗證 35 4.3.9 彎曲角度對於雙極異質薄膜影響之實驗驗證 36 4.4 雙極異質薄膜於電動能源轉換之結果分析 36 4.4.1 雙極異質薄膜於電動能源轉換之真實功率輸出結果 36 4.4.2 雙極異質薄膜於真實功率輸出之提升 36 4.5 雙極異質薄膜應用之結果分析 37 4.5.1 串聯與並聯對於雙極異質薄膜影響之實驗驗證 37 4.5.2 雙極異質薄膜實際應用 37 第五章 結論 37

    1. Creutzig, F.; Agoston, P.; Goldschmidt, J. C.; Luderer, G.; Nemet, G.; Pietzcker, R. C., The Underestimated Potential of Solar Energy to Mitigate Climate Change. Nat. Energy 2017, 2, 17140.
    2. Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C. L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H., Grand Challenges in the Science of Wind Energy. Science 2019, 366, eaau2027.
    3. Okot, D. K., Review of Small Hydropower Technology. Renew. Sustain. Energy Rev. 2013, 26, 515-520.
    4. Abbasi, T.; Abbasi, S., Biomass Energy and the Environmental Impacts Associated with Its Production and Utilization. Renew. Sustain. Energy Rev. 2010, 14, 919-937.
    5. Watanabe, N.; Numakura, T.; Sakaguchi, K.; Saishu, H.; Okamoto, A.; Ingebritsen, S. E.; Tsuchiya, N., Potentially Exploitable Supercritical Geothermal Resources in the Ductile Crust. Nat. Geosci. 2017, 10, 140-144.
    6. Bae, Y. H.; Kim, K. O.; Choi, B. H., Lake Sihwa Tidal Power Plant Project. Ocean Eng. 2010, 37, 454-463.
    7. Van der Heyden, F. H.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C., Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels. Nano Lett. 2006, 10, 2232-2237.
    8. Liu, K.; Ding, T.; Li, J.; Chen, Q.; Xue, G.; Yang, P.; Xu, M.; Wang, Z. L.; Zhou, J., Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film. Adv. Energy Mater. 2018, 8, 1702481.
    9. Yang, C.; Li, D., Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels. J. Colloid Interface Sci. 1997, 194, 95-107.
    10. Osterle, J., Electrokinetic Energy Conversion. J. Appl. Mech 1964, 161-164.
    11. Morrison Jr, F.; Osterle, J., Electrokinetic Energy Conversion in Ultrafine Capillaries. J. Chem. Phys. 1965, 43, 2111-2115.
    12. Mei, L.; Yeh, L.-H.; Qian, S., Buffer Anions can Enormously Enhance the Electrokinetic Energy Conversion in Nanofluidics with Highly Overlapped Double Layers. Nano Energy 2017, 32, 374-381.
    13. Ren, Y.; Stein, D., Slip-Enhanced Electrokinetic Energy Conversion in Nanofluidic Channels. Nanotechnology 2008, 19, 195707.
    14. Král, P.; Shapiro, M., Nanotube Electron Drag in Flowing Liquids. Phys. Rev. Lett. 2001, 86, 131.
    15. Ghosh, S.; Sood, A.; Kumar, N., Carbon Nanotube Flow Sensors. Science 2003, 299, 1042-1044.
    16. Ghosh, S.; Sood, A.; Ramaswamy, S.; Kumar, N., Flow-Induced Voltage and Current Generation in Carbon Nanotubes. Phys. Rev. B 2004, 70, 205423.
    17. Zhao, Y.; Song, L.; Deng, K.; Liu, Z.; Zhang, Z.; Yang, Y.; Wang, C.; Yang, H.; Jin, A.; Luo, Q., Individual Water‐Filled Single‐Walled Carbon Nanotubes as Hydroelectric Power Converters. Adv. Mater. 2008, 20, 1772-1776.
    18. Liu, J.; Dai, L.; Baur, J. W., Multiwalled Carbon Nanotubes for Flow-Induced Voltage Generation. J. Appl. Phys. 2007, 101, 064312.
    19. Yuan, Q.; Zhao, Y.-P., Hydroelectric Voltage Generation Based on Water-Filled Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2009, 131, 6374-6376.
    20. Cohen, A. E., Carbon Nanotubes Provide a Charge. Science 2003, 300, 1235-1236.
    21. Yun, T. G.; Bae, J.; Rothschild, A.; Kim, I.-D., Transpiration Driven Electrokinetic Power Generator. ACS Nano 2019, 13, 12703-12709.
    22. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., Nanowire Dye-Sensitized Solar Cells. Nat. Mater. 2005, 4, 455-459.
    23. Song, J.; Zhou, J.; Wang, Z. L., Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano Lett. 2006, 6, 1656-1662.
    24. Wang, Z. L.; Song, J., Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242-246.
    25. Bell, L. E., Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457-1461.
    26. García Núñez, C.; Manjakkal, L.; Dahiya, R., Energy Autonomous Electronic Skin. npj Flex. Electron. 2019, 3, 1.
    27. Osterle, J., Electrokinetic Energy Conversion. J. Appl. Mech. 1964, 161-164.
    28. Daiguji, H.; Yang, P.; Szeri, A. J.; Majumdar, A., Electrochemomechanical Energy Conversion in Nanofluidic Channels. Nano Lett. 2004, 4, 2315-2321.
    29. van der Heyden, F. H.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C., Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels. Nano Lett. 2007, 7, 1022-1025.
    30. Dhiman, P.; Yavari, F.; Mi, X.; Gullapalli, H.; Shi, Y.; Ajayan, P. M.; Koratkar, N., Harvesting Energy From Water Flow Over Graphene. Nano Lett. 2011, 11, 3123-3127.
    31. Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W., Generating Electricity by Moving a Droplet of Ionic Liquid along Graphene. Nat. Nanotechnol. 2014, 9, 378-383.
    32. Yin, J.; Zhang, Z.; Li, X.; Yu, J.; Zhou, J.; Chen, Y.; Guo, W., Waving Potential in Graphene. Nat. Commun. 2014, 5, 3582.
    33. Ghosh, S.; Sood, A.; Kumar, N., Carbon Nanotube Flow Sensors. Science 2003, 299, 1042-1044.
    34. Zhao, Y.; Song, L.; Deng, K.; Liu, Z.; Zhang, Z.; Yang, Y.; Wang, C.; Yang, H.; Jin, A.; Luo, Q., Individual Water‐Filled Single‐Walled Carbon Nanotubes as Hydroelectric Power Converters. Adv. Mater. 2008, 20, 1772-1776.
    35. Olabi, A.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E. T.; Maghrabie, H. M.; Abdelkareem, M. A., Assessment of the Pre-Combustion Carbon Capture Contribution into Sustainable Development Goals SDGs Using Novel Indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710.
    36. Park, D.; Won, S.; Kim, K.-S.; Jung, J.-Y.; Choi, J.-Y.; Nah, J., The Influence of Substrate-Dependent Triboelectric Charging of Graphene on the Electric Potential Generation by the Flow of Electrolyte Droplets. Nano Energy 2018, 54, 66-72.
    37. Xu, W.; Zheng, H.; Liu, Y.; Zhou, X.; Zhang, C.; Song, Y.; Deng, X.; Leung, M.; Yang, Z.; Xu, R. X., A Droplet-Based Electricity Generator with High Instantaneous Power Density. Nature 2020, 578, 392-396.
    38. Helseth, L.; Guo, X., Contact Electrification and Energy Harvesting Using Periodically Contacted and Squeezed Water Droplets. Langmuir 2015, 31, 3269-3276.
    39. Yoon, S. G.; Yang, Y.; Jin, H.; Lee, W. H.; Sohn, A.; Kim, S. W.; Park, J.; Kim, Y. S., A Surface‐Functionalized Ionovoltaic Device for Probing Ion‐Specific Adsorption at the Solid–Liquid Interface. Adv. Mater. 2019, 31, 1806268.
    40. Xu, Y.; Chen, P.; Zhang, J.; Xie, S.; Wan, F.; Deng, J.; Cheng, X.; Hu, Y.; Liao, M.; Wang, B., A One‐Dimensional Fluidic Nanogenerator with a High Power Conversion Efficiency. Angew. Chem. Int. Ed. 2017, 56, 12940-12945.
    41. Zhang, Y.; Xiong, T.; Suresh, L.; Qu, H.; Zhang, X.; Zhang, Q.; Yang, J.; Tan, S. C., Guaranteeing Complete Salt Rejection by Channeling Saline Water through Fluidic Photothermal Structure toward Synergistic Zero Energy Clean Water Production and in Situ Energy Generation. ACS Energy Lett. 2020, 5, 3397-3404.
    42. Xu, T.; Ding, X.; Huang, Y.; Shao, C.; Song, L.; Gao, X.; Zhang, Z.; Qu, L., An Efficient Polymer Moist-Electric Generator. Energy Environ. Sci. 2019, 12, 972-978.
    43. Bae, J.; Yun, T. G.; Suh, B. L.; Kim, J.; Kim, I.-D., Self-Operating Transpiration-Driven Electrokinetic Power Generator with an Artificial Hydrological Cycle. Energy Environ. Sci. 2020, 13, 527-534.
    44. Liu, X.; Gao, H.; Ward, J. E.; Liu, X.; Yin, B.; Fu, T.; Chen, J.; Lovley, D. R.; Yao, J., Power Generation from Ambient Humidity using Protein Nanowires. Nature 2020, 578, 550-554.
    45. Wang, H.; Sun, Y.; He, T.; Huang, Y.; Cheng, H.; Li, C.; Xie, D.; Yang, P.; Zhang, Y.; Qu, L., Bilayer of Polyelectrolyte Films for Spontaneous Power Generation in Air up to an Integrated 1,000 V Output. Nat. Nanotechnol. 2021, 16, 811-819.
    46. Wang, H.; Cheng, H.; Huang, Y.; Yang, C.; Wang, D.; Li, C.; Qu, L., Transparent, Self-Healing, Arbitrary Tailorable Moist-Electric Film Generator. Nano Energy 2020, 67, 104238.
    47. Huang, Y.; Cheng, H.; Yang, C.; Yao, H.; Li, C.; Qu, L., All-Region-Applicable, Continuous Power Supply of Graphene Oxide Composite. Energy Environ. Sci. 2019, 12, 1848-1856.
    48. Wu, Y.; Shao, B.; Song, Z.; Li, Y.; Zou, Y.; Chen, X.; Di, J.; Song, T.; Wang, Y.; Sun, B., A Hygroscopic Janus Heterojunction for Continuous Moisture-Triggered Electricity Generators. ACS Appl. Mater. Interfaces 2022, 14, 19569-19578.
    49. Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L., Water-Evaporation-Induced Electricity with Nanostructured Carbon Materials. Nat. Nanotechnol. 2017, 12, 317-321.
    50. Hou, B.; Kong, D.; Qian, J.; Yu, Y.; Cui, Z.; Liu, X.; Wang, J.; Mei, T.; Li, J.; Wang, X., Flexible and Portable Graphene on Carbon Cloth as a Power Generator for Electricity Generation. Carbon 2018, 140, 488-493.
    51. Ma, Q.; He, Q.; Yin, P.; Cheng, H.; Cui, X.; Yun, Q.; Zhang, H., Rational Design of MOF‐Based Hybrid Nanomaterials for Directly Harvesting Electric Energy from Water Evaporation. Adv. Mater. 2020, 32, 2003720.
    52. Yoon, S. G.; Jin, H.; Lee, W. H.; Han, J.; Cho, Y. H.; Kim, Y. S., Evaporative Electrical Energy Generation via Diffusion-Driven Ion-Electron-Coupled Transport in Semiconducting Nanoporous Channel. Nano Energy 2021, 80, 105522.
    53. Shao, B.; Song, Z.; Chen, X.; Wu, Y.; Li, Y.; Song, C.; Yang, F.; Song, T.; Wang, Y.; Lee, S.-T., Bioinspired Hierarchical Nanofabric Electrode for Silicon Hydrovoltaic Device with Record Power Output. ACS Nano 2021, 15, 7472-7481.
    54. Wu, M.; Peng, M.; Liang, Z.; Liu, Y.; Zhao, B.; Li, D.; Wang, Y.; Zhang, J.; Sun, Y.; Jiang, L., Printed Honeycomb-Structured Reduced Graphene Oxide Film for Efficient and Continuous Evaporation-Driven Electricity Generation from Salt Solution. ACS Appl. Mater. Interfaces 2021, 13, 26989-26997.
    55. Chaurasia, S.; Kumar, R.; Tabrizizadeh, T.; Liu, G.; Stamplecoskie, K., All-Weather-Compatible Hydrovoltaic Cells Based on Al2O3 TLC Plates. ACS Omega 2022, 7, 2618-2632.
    56. Tabrizizadeh, T.; Wang, J.; Kumar, R.; Chaurasia, S.; Stamplecoskie, K.; Liu, G., Water-Evaporation-Induced Electric Generator Built from Carbonized Electrospun Polyacrylonitrile Nanofiber Mats. ACS Appl. Mater. Interfaces 2021, 13, 50900-50910.
    57. Zhao, X.; Xiong, Z.; Qiao, Z.; Bo, X.; Pang, D.; Sun, J.; Bian, J., Robust and Flexible Wearable Generator Driven by Water Evaporation for Sustainable and Portable Self-Power Supply. Chem. Eng. J. 2022, 434, 134671.
    58. Li, C.; Tian, Z.; Liang, L.; Yin, S.; Shen, P. K., Electricity Generation From Capillary-Driven Ionic Solution Flow in a Three-Dimensional Graphene Membrane. ACS Appl. Mater. Interfaces 2019, 11, 4922-4929.
    59. Jin, H.; Yoon, S. G.; Lee, W. H.; Cho, Y. H.; Han, J.; Park, J.; Kim, Y. S., Identification of Water-Infiltration-Induced Electrical Energy Generation by Ionovoltaic Effect in Porous CuO Nanowire Films. Energy Environ. Sci. 2020, 13, 3432-3438.
    60. Jin, H.; Park, J.; Yoon, S. G.; Lee, W. H.; Cho, Y. H.; Han, J.; Yin, Z.; Kim, Y. S., Verification of Carrier Concentration‐Dependent Behavior in Water‐Infiltration‐Induced Electricity Generation by Ionovoltaic Effect. Small 2021, 17, 2103448.
    61. Bae, J.; Kim, M. S.; Oh, T.; Suh, B. L.; Yun, T. G.; Lee, S.; Hur, K.; Gogotsi, Y.; Koo, C. M.; Kim, I.-D., Towards Watt-Scale Hydroelectric Energy Harvesting by Ti 3C2Tx-Based Transpiration-Driven Electrokinetic Power Generators. Energy Environ. Sci. 2022, 15, 123-135.
    62. Shao, B.; Wu, Y.; Song, Z.; Yang, H.; Chen, X.; Zou, Y.; Zang, J.; Yang, F.; Song, T.; Wang, Y., Freestanding Silicon Nanowires Mesh for Efficient Electricity Generation from Evaporation-Induced Water Capillary Flow. Nano Energy 2022, 94, 106917.
    63. Yun, T. G.; Bae, J.; Nam, H. G.; Kim, D.; Yoon, K. R.; Han, S. M.; Kim, I.-D., Ion-Permselective Conducting Polymer-Based Electrokinetic Generators with Maximized Utility of Green Water. Nano Energy 2022, 94, 106946.
    64. Huang, Y.; Cheng, H.; Qu, L., Emerging Materials for Water-Enabled Electricity Generation. ACS Mater. Lett. 2021, 3, 193-209.
    65. Kohonen, M. M.; Karaman, M. E.; Pashley, R. M., Debye Length in Multivalent Electrolyte Solutions. Langmuir 2000, 16, 5749-5753.
    66. Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J. N., Debye Length and Double-Layer Forces in Polyelectrolyte Solutions. Macromolecules 2002, 35, 2380-2388.
    67. Lin, C. Y.; Yeh, L. H.; Hsu, J. P.; Tseng, S., Regulating Current Rectification and Nanoparticle Transport Through a Salt Gradient in Bipolar Nanopores. Small 2015, 11, 4594-4602.
    68. Yang, C.; Hinkle, P.; Menestrina, J.; Vlassiouk, I. V.; Siwy, Z. S., Polarization of Gold in Nanopores Leads to Ion Current Rectification. J. Phys. Chem. Lett. 2016, 20, 4152-4158.
    69. Rashidi, M.; Zargartalebi, M.; Benneker, A. M., Mechanistic Studies of Droplet Electrophoresis: A Review. Electrophoresis 2021, 42, 869-880.
    70. Kusama, S.; Sato, K.; Matsui, Y.; Kimura, N.; Abe, H.; Yoshida, S.; Nishizawa, M., Transdermal Electroosmotic Flow Generated by a Porous Microneedle Array Patch. Nat. Commun. 2021, 12, 652.
    71. Ohshima, H., Sedimentation Potential and Velocity in a Concentrated Suspension of Soft Particles. J. Colloid Interface Sci. 2000, 229, 140-147.
    72. Kincses, A.; Santa-Maria, A. R.; Walter, F. R.; Dér, L.; Horányi, N.; Lipka, D. V.; Valkai, S.; Deli, M. A.; Dér, A., A Chip Device to Determine Surface Charge Properties of Confluent Cell Monolayers by Measuring Streaming Potential. Lab Chip 2020, 20, 3792-3805.
    73. Sbaï, M.; Szymczyk, A.; Fievet, P.; Sorin, A.; Vidonne, A.; Pellet-Rostaing, S.; Favre-Reguillon, A.; Lemaire, M., Influence of the Membrane Pore Conductance on Tangential Streaming Potential. Langmuir 2003, 19, 8867-8871.
    74. Şanlı, L. I.; Bayram, V.; Ghobadi, S.; Düzen, N.; Gürsel, S. A., Engineered Catalyst Layer Design with Graphene-Carbon Black Hybrid Supports for Enhanced Platinum Utilization in PEM Fuel Cell. Int. J. Hydrog. Energy 2017, 42, 1085-1092.
    75. Malard, L.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M., Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51-87.
    76. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
    77. Nemes-Incze, P.; Osváth, Z.; Kamarás, K.; Biró, L., Anomalies in Thickness Measurements of Graphene and Few Layer Graphite Crystals by Tapping Mode Atomic Force Microscopy. Carbon 2008, 46 , 1435-1442.
    78. Taherian, F.; Marcon, V.; van der Vegt, N. F.; Leroy, F., What is the Contact Angle of Water on Graphene? Langmuir 2013, 29, 1457-1465.
    79. Naassaoui, I.; Aschi, A., Influence of Temperature and Salt on Coacervation in an Aqueous Mixture of Poly-L-Lysine (PLL) and Poly-(Sodium Styrene Sulfonate)(PSSNa). Eur. Biophys. J. 2021, 50, 877-887.
    80. Kwak, S. S.; Lin, S.; Lee, J. H.; Ryu, H.; Kim, T. Y.; Zhong, H.; Chen, H.; Kim, S.-W., Triboelectrification-Induced Large Electric Power Generation from a Single Moving Droplet on Graphene/Polytetrafluoroethylene. Acs Nano 2016, 10, 7297-7302.
    81. Li, J.; Liu, K.; Xue, G.; Ding, T.; Yang, P.; Chen, Q.; Shen, Y.; Li, S.; Feng, G.; Shen, A., Electricity Generation from Water Droplets via Capillary Infiltrating. Nano Energy 2018, 48, 211-216.

    無法下載圖示 全文公開日期 2025/08/01 (校內網路)
    全文公開日期 2025/08/01 (校外網路)
    全文公開日期 2025/08/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE