簡易檢索 / 詳目顯示

研究生: Chynthia Devi Hartono
Chynthia Devi Hartono
論文名稱: 油/水皮克林乳化及水/油薄膜乳化微膠囊化之研究
Microencapsulation via O/W Pickering Emulsion and W/O Membrane Emulsification
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 何明樺
Ming-Hua Ho
劉懷勝
Hwai-Shen Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 58
中文關鍵詞: 皮克林乳液纖維素奈米晶體精油微膠囊膜乳化法
外文關鍵詞: Pickering emulsion, cellulose nanocrystals, essential oil, microcapsules, membrane emulsification
相關次數: 點閱:308下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

微膠囊化已被廣泛應用於許多領域,如製藥、農業、醫療和食品工業,也有許多製備微膠囊的方法已被研究出來。本研究中,我們致力於以一階段式來製備微膠囊化的製程。水中油滴型乳化液(oil-in-water (O/W) emulsion)是油滴在水的連續相中乳化,常以合成的表面活性劑和聚合物所製備。近年來,已有研究證明不同大小的奈米顆粒或微粒均可穩定O / W的乳化作用,其被稱為皮克林乳液(Pickering emulsion)。本研究中,皮克林乳液是以纖維素奈米晶體(Cellulose Nanocrystals,CNCs)所製成,利用低濃度(0.1wt%)的纖維素奈米晶體和含有疏水性抗微生物劑的橄欖油(Olive oil)製備出穩定型抗微生物的水中油滴型皮克林乳液。研究發現O/W體積比在1至4下所製備的乳化液,若在水相中添加20mM的NaCl,則可增強乳化液的穩定性,平均直徑約為3.70±0.85μm的油滴會均勻地分散在乳化液中,即使存放1個月,這些微乳化液也是挺穩定的。 此外,穩定的微乳液可以維持在低於30℃的溫度下。利用具有螢光性和油溶性的薑黃素(Curcumin),在螢光顯微鏡下觀察微膠囊化的油滴。苯乙烯(Styrene)也被用來作為油相,並在皮克林乳液中聚合,再以掃描式電子顯微鏡(Scanning Electron Microscope ,SEM)觀察CNC薄膜。在橄欖油中使用各種濃度的百里香(Thymus vulgaris)和肖楠(Calocedrus formosana)精油(Essential oil)作為活性抗微生物劑,發現肖楠精油對於殺死金黃色葡萄球菌(S. aureus)比百里香精油更起作用。將肖楠精油和百里香精油混合後能取得更廣泛的抗微生物活性。橄欖油、精油和薑黃素均表現出對DPPH自由基的淨化活性,其中以百里香精油最具有高抗氧化活性,可去除約92%的DPPH自由基。
另外,使用膜乳化法製備油中水滴型乳化液(Water-in-oil emulsion), 將單寧酸(Tannic acid,TA)溶液流過聚合物的薄膜過濾器並進入含有FeIII溶液和非離子Span®80表面活性劑的連續相中,由於Fe3+與單寧酸交聯,可以生成FeIII-TA的微膠囊。在W / O的體積比固定在1至10,而攪拌速度為600rpm的連續相中可獲得最小尺寸約為0.38±0.01μm的微膠囊,利用SEM和TEM分別研究高分子膜和微膠囊的形態。將微膠囊分散於不同的pH值中觀察穩定性。為了證實微膠囊的多功能性,將FeIII-TA微膠囊包覆磁性納米顆粒、酵素和水凝膠。然而,由於在乳化作用前,分散相中的單寧酸和活性成分間的相互作用,使得微膠囊不能用於包覆物質。因此包覆在FeIII-TA微膠囊中的酵素將會從膠囊中釋放出來。此外,獲得了不規則形狀的水凝膠微膠囊和包封磁性NPs的聚集作用。


Microencapsulation has widely used in many areas such as pharmaceutical, agricultural, medical and food industries. Many methods have been developed to produce microcapsules for microencapsulation. In this work, we focus on one-step microencapsulation process. The oil-in-water (O/W) emulsion, in which oil droplets are emulsified in continuous phase of water, is conventionally prepared by synthetic surfactants and polymers. In recent years, various nano or microparticles been demonstrated can stabilize O/W emulsion, which known as Pickering emulsion. In this study, Pickering oil emulsion was prepared by cellulose nanocrystals (CNCs). Stable antimicrobial oil-in-water Pickering emulsion was prepared by employing a low concentration (0.1 wt%) of cellulose nanocrystals and olive oil containing hydrophobic antimicrobial agents. NaCl concentration of 20 mM in the water phase was found to greatly enhance stability of the emulsions prepared at O/W volume ratio of 1 to 4. Oil droplets with an average diameter of 3.70 ± 0.85 µm were uniformly dispersed in the emulsion. These microemulsions are stable even if stored for 1 month. Besides, the stable microemulsions can be maintained at temperature lower than 30°C. Curcumin with its fluorescence and oil-soluble properties was employed to observe the microencapsulated oil droplet under fluourescent microscope. Styrene was also used as an oil phase and polymerized in the Pickering emulsion to observe the CNC layer by Scanning Electron Microscope (SEM). Essential oil of Thymus vulgaris and Calocedrus formosana of various concentrations were employed in the olive oil as active antimicrobial agents. Essential oil of Calocedrus formosana was found to be more effective for killing S. aureus than that of Thymus vulgaris. Broader spectrum of antimicrobial activity was achieved by mixing Calocedrus formosana and Thymus vulgaris oil. Olive oil, essential oils and curcumin showed scavenging activity of DPPH● free radicals. Among them, Thymus vulgaris oil has the highest antioxidant activity that remove approximately 92% DPPH● free radicals.
Additionally, the water-in-oil emulsion was prepared by using membrane emulsification method. The tannic acid (TA) solution was flew through polymeric membrane filter into the continuous phase which containing FeIII solution and nonionic Span®80 surfactant. Due to ferric ions cross linked with tannic acid, the FeIII-TA microcapsules can be formed. The volume ratio of W/O was fixed at 1 to 10. The smallest size of microcapsules was obtained at 600 rpm agitation speed of continuous phase, which is 0.38 ± 0.01 µm. The morphology of polymeric membrane and microcapsules were investigated by SEM and TEM, respectively. Microcapsules were dispersed in various pH values to check the stability. To confirm the versatility, the FeIII-TA microcapsule was applied to encapsulate magnetic nanoparticles, enzyme, and hydrogel. However, the microcapsules could not be used to encapsulate something due to the interaction between tannic acid and active ingredients in the dispersed phase before emulsification process. Hence, the enzyme encapsulated in FeIII-TA microcapsules go out from capsule. Besides, the irregular shape of hydrogel microcapsules and aggregation of encapsulated magnetic NPs were obtained.

中文摘要 ii ABSTRACT iii ABBREVIATIONS iv ACKNOWLEDGMENT v TABLE OF CONTENTS vi LIST OF FIGURES viii LIST OF TABLES x CHAPTER 1 INTRODUCTION 1 1.1. Research Background 1 1.2. Research Objectives 2 CHAPTER 2 LITERATURE REVIEW 4 2.1. Microcapsules 4 2.2. Pickering emulsion 5 2.3. Cellulose nanocrystals (CNC) 5 2.4. Curcumin 5 2.5. Essential oil 6 2.6. Mechanism of Antimicrobial Action of Essential Oils against Microbes 7 2.7. Membrane Emulsification 8 2.8. Tannic Acid 9 2.9. Glucose Oxidase 10 CHAPTER 3 MATERIAL AND METHOD 11 3.1. Material 11 3.2. Method 14 3.3. Assays 16 3.4. Instruments 18 CHAPTER 4 RESULT AND DISCUSSSION 21 4.1. Oil in Water (O/W) emulsion 21 4.1.1. Characterization of CNC 21 4.1.2. Formation of oil-in-water (O/W) emulsion 21 4.1.3. Antimicrobial activity of microemulsion 30 4.1.4. Antioxidant activity of microemulsion 32 4.2. Water in Oil (W/O) emulsion 33 4.2.1. Characterization of polymeric membrane and microcapsules 33 4.2.2. Encapsulated Enzyme 37 4.2.3. Alginate in Fe-TA microcapsules 38 4.2.4. Magnetic Nanoparticles (MNPs) in Fe-TA microcapsule 39 CHAPTER 5 CONCLUSION 41 REFERENCES 42

Ak, T., & Gülçin, İ. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-biological interactions, 174(1), 27-37.
Akthar, M. S., Degaga, B., & Azam, T. (2014). Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: a review. Issues in Biological Sciences and Pharmaceutical Research, 2(1), 1-7.
Amatiste, S., Sagrafoli, D., Giacinti, G., Rosa, G., Carfora, V., Marri, N., . . . Rosati, R. (2014). Antimicrobial Activity of Essential Oils Against Staphylococcus aureus in Fresh Sheep Cheese. Italian Journal of Food Safety, 3(3), 1696. doi:10.4081/ijfs.2014.1696
Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase — An overview. Biotechnology Advances, 27(4), 489-501. doi:https://doi.org/10.1016/j.biotechadv.2009.04.003
Béjaoui, A., Chaabane, H., Jemli, M., Boulila, A., & Boussaid, M. (2013). Essential oil composition and antibacterial activity of Origanum vulgare subsp. glandulosum Desf. at different phenological stages. Journal of medicinal food, 16(12), 1115-1120.
Binks, B. P., & Lumsdon, S. O. (2000). Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsions. Langmuir, 16(23), 8622-8631. doi:10.1021/la000189s
Borugă, O., Jianu, C., Mişcă, C., Goleţ, I., Gruia, A., & Horhat, F. (2014). Thymus vulgaris essential oil: chemical composition and antimicrobial activity. Journal of medicine and life, 7(Spec Iss 3), 56.
Braca, A., Siciliano, T., D’Arrigo, M., & Germanò, M. P. (2008). Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia, 79(2), 123-125. doi:https://doi.org/10.1016/j.fitote.2007.11.002
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International journal of food microbiology, 94(3), 223-253.
Chao, K.-P., Hua, K.-F., Hsu, H.-Y., Su, Y.-C., & Chang, S.-T. (2005). Anti-inflammatory activity of sugiol, a diterpene isolated from Calocedrus formosana bark. Planta medica, 71(04), 300-305.
Cheng, S.-S., Wu, C.-L., Chang, H.-T., Kao, Y.-T., & Chang, S.-T. (2004). Antitermitic and antifungal activities of essential oil of Calocedrus formosana leaf and its composition. Journal of chemical ecology, 30(10), 1957-1967.
Cherhal, F., Cousin, F., & Capron, I. (2016). Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals. Biomacromolecules, 17(2), 496-502.
Cox, S., Gustafson, J., Mann, C., Markham, J., Liew, Y. C., Hartland, R., . . . Wyllie, S. G. (1998). Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Letters in Applied Microbiology, 26(5), 355-358.
Cox, S., Mann, C., Markham, J., Bell, H., Gustafson, J., Warmington, J., & Wyllie, S. (2000). The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). Journal of applied microbiology, 88(1), 170-175.
Ejima, H., Richardson, J. J., Liang, K., Best, J. P., van Koeverden, M. P., Such, G. K., . . . Caruso, F. (2013). One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science, 341(6142), 154.
Flores Santurio, D., Kunz de Jesus, F. P., Zanette, R. A., Bizzi Schlemmer, K., Fraton, A., & Martins Fries, L. L. (2014). Antimicrobial activity of the essential oil of thyme and of thymol against Escherichia coli strains. Acta Scientiae Veterinariae, 42(1).
Ghannam, M. T. (2005). Water-in-crude oil emulsion stability investigation. Petroleum science and technology, 23(5-6), 649-667.
Ghosh, S. K. (2006). 1 Functional Coatings and Microencapsulation: A General Perspective.
Gülçin, I., Huyut, Z., Elmastaş, M., & Aboul-Enein, H. (2010). Radical scavenging and antioxidant activity of tannic acid (Vol. 3).
Hedjazi, S., & Razavi, S. H. (2018). A comparison of Canthaxanthine Pickering emulsions, stabilized with cellulose nanocrystals of different origins. International journal of biological macromolecules, 106, 489-497.
Hu, C. Y., Chen, M., & Wang, Z. W. (2012). Release of thymol, cinnamaldehyde and vanillin from soy protein isolate films into olive oil. Packaging Technology and Science, 25(2), 97-106.
Hu, Z., Cranston, E. D., Ng, R., & Pelton, R. (2014). Tuning Cellulose Nanocrystal Gelation with Polysaccharides and Surfactants. Langmuir, 30(10), 2684-2692. doi:10.1021/la404977t
Hu, Z., Marway, H. S., Kasem, H., Pelton, R., & Cranston, E. D. (2016). Dried and Redispersible Cellulose Nanocrystal Pickering Emulsions. ACS Macro Letters, 5(2), 185-189. doi:10.1021/acsmacrolett.5b00919
Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H., . . . Gao, H.-J. (2008). Large-scale Fe 3O 4 nanoparticles soluble in water synthesized by a facile method. The Journal of Physical Chemistry C, 112(30), 11336-11339.
Imelouane, B., Amhamdi, H., Wathelet, J.-P., Ankit, M., Khedid, K., & El Bachiri, A. (2009). Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from Eastern Morocco. Int. J. Agric. Biol, 11(2), 205-208.
Joscelyne, S. M., & Trägårdh, G. (2000). Membrane emulsification — a literature review. Journal of Membrane Science, 169(1), 107-117. doi:https://doi.org/10.1016/S0376-7388(99)00334-8
Kalashnikova, I., Bizot, H., Cathala, B., & Capron, I. (2011). Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules, 13(1), 267-275.
Kilic, E., Novoselova, M. V., Lim, S. H., Pyataev, N. A., Pinyaev, S. I., Kulikov, O. A., . . . Kiryukhin, M. V. (2017). Formulation for Oral Delivery of Lactoferrin Based on Bovine Serum Albumin and Tannic Acid Multilayer Microcapsules. Scientific Reports, 7, 44159. doi:10.1038/srep44159
Kim, B. J., Han, S., Lee, K.-B., & Choi, I. S. (2017). Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation. Advanced Materials, 29(28), 1700784-n/a. doi:10.1002/adma.201700784
Lam, E., Male, K. B., Chong, J. H., Leung, A. C. W., & Luong, J. H. T. (2012). Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30(5), 283-290. doi:https://doi.org/10.1016/j.tibtech.2012.02.001
Marquis, M., Alix, V., Capron, I., Cuenot, S., & Zykwinska, A. (2016). Microfluidic Encapsulation of Pickering Oil Microdroplets into Alginate Microgels for Lipophilic Compound Delivery. ACS Biomaterials Science & Engineering, 2(4), 535-543. doi:10.1021/acsbiomaterials.5b00522
Mastromatteo, M., Barbuzzi, G., Conte, A., & Del Nobile, M. (2009). Controlled release of thymol from zein based film. Innovative Food Science & Emerging Technologies, 10(2), 222-227.
Mikulcová, V., Bordes, R., & Kašpárková, V. (2016). On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles. Food Hydrocolloids, 61, 780-792. doi:https://doi.org/10.1016/j.foodhyd.2016.06.031
Nata, I. F., Chen, K.-J., & Lee, C.-K. (2014). Facile microencapsulation of curcumin in acetylated starch microparticles. Journal of microencapsulation, 31(4), 344-349.
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451-1474.
Noorafshan, A., & Ashkani-Esfahani, S. (2013). A review of therapeutic effects of curcumin. Current pharmaceutical design, 19(11), 2032-2046.
Oussalah, M., Caillet, S., & Lacroix, M. (2006). Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes. Journal of food protection, 69(5), 1046-1055.
Peng, S. J., & Williams, R. A. (1998). Controlled Production of Emulsions Using a Crossflow Membrane: Part I: Droplet Formation from a Single Pore. Chemical Engineering Research and Design, 76(8), 894-901. doi:https://doi.org/10.1205/026387698525694
Rohman, A., & Che Man, Y. (2011). Simultaneous quantitative analysis of two functional food oils, extra virgin olive oil and virgin coconut oil using FTIR spectroscopy and multivariate calibration. International Food Research Journal, 18(4).
Santos, J., Vladisavljević, G. T., Holdich, R. G., Dragosavac, M. M., & Muñoz, J. (2015). Controlled production of eco-friendly emulsions using direct and premix membrane emulsification. Chemical Engineering Research and Design, 98, 59-69. doi:https://doi.org/10.1016/j.cherd.2015.04.009
Santos, J. C. O., Dantas, J. P., Souza, A. G. d., & Conceição, M. M. d. (2005). THERMAL STABILITY OF COMMERCIAL EDIBLE OILS BY THERMOGRAVIMETRY. Paper presented at the II Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel Realização, Lavras.
Soković, D. M., Vukojević, J., Marin, D. P., Brkić, D. D., Vajs, V., & Van Griensven, J. L. (2009). Chemical Composition of Essential Oilsof Thymus and Mentha Speciesand Their Antifungal Activities. Molecules, 14(1). doi:10.3390/molecules14010238
Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Complementary and Alternative Medicine, 2016.
Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43, 587-595. doi:https://doi.org/10.1016/j.indcrop.2012.07.069
Ultee, A., Kets, E., & Smid, E. (1999). Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Applied and environmental microbiology, 65(10), 4606-4610.
Wang, S.-Y., Wu, J.-H., Cheng, S.-S., Lo, C.-P., Chang, H.-N., Shyur, L.-F., & Chang, S.-T. (2004). Antioxidant activity of extracts from Calocedrus formosana leaf, bark, and heartwood. Journal of Wood Science, 50(5), 422-426.
Witt, S., Wohlfahrt, G., Schomburg, D., Hecht, H. J., & Kalisz, H. M. (2000). Conserved arginine-516 of Penicillium amagasakiense glucose oxidase is essential for the efficient binding of beta-D-glucose. Biochemical Journal, 347(Pt 2), 553-559.
Wu, J., Jing, W., Xing, W., & Xu, N. (2006). Preparation of W/O emulsions by membrane emulsification with a mullite ceramic membrane. Desalination, 193(1-3), 381-386.
Yang, C., Wu, H., Yang, X., Shi, J., Wang, X., Zhang, S., & Jiang, Z. (2015). Coordination-Enabled One-Step Assembly of Ultrathin, Hybrid Microcapsules with Weak pH-Response. ACS Applied Materials & Interfaces, 7(17), 9178-9184. doi:10.1021/acsami.5b01463
Zhang, Y., Karimkhani, V., Makowski, B. T., Samaranayake, G., & Rowan, S. J. (2017). Nanoemulsions and Nanolatexes Stabilized by Hydrophobically Functionalized Cellulose Nanocrystals. Macromolecules, 50(16), 6032-6042. doi:10.1021/acs.macromol.7b00982

QR CODE