簡易檢索 / 詳目顯示

研究生: 方秀博
XIU-BO FANG
論文名稱: 陶瓷粉末成型結合3D掃描應用於多軸數控加工成型
Multi-axis CNC machining forming by ceramics powder process combined with 3D scanning
指導教授: 林舜天
Shun-Tian Lin
口試委員: 鄭逸琳
Yih-Lin Cheng
林寬泓
Kuan-Hong Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 114
中文關鍵詞: 逆向工程3D掃描高嶺土生胚加工多軸加工
外文關鍵詞: kaolin, Green machining, Multi-axis machining
相關次數: 點閱:328下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的是傳達一種利用複製形態的概念建立出加工圖檔,以3D掃描技術透過光線與物品反射之非接觸方式取得物品3D圖檔,除了能夠複製原物品的圖檔以外還可以依照個人喜好任意編輯外形,繪製出全新獨一無二的圖檔。材料採用傳統陶瓷生胚,以未燒結情況下進行加工,藉由四軸加工之CAD(Computer Aided Design) 與CAM (Computer Aided Manufacturing)製造成型技術達到產品快速、少量、多樣變化的製造方式。
根據以上的實驗結果發現,掃描器Artec Spider™機台最合適,其主要原因是能夠直接掃描高反光率物件且完整度高、掃描範圍廣、手持式掃描活用性高、解析度及圖檔精度高。材料部份,生胚的斷面結構緊密黏結沒有明顯邊界、抗彎強度8.1MPa符合2MPa以上可判斷材料具備基本的切削強度。加工最佳條件,深度最大為5mm、轉速1000rpm以下、進給率400mm/min最佳。
最後由實例測試可發現加工面沒有微裂紋產生以及燒結後沒有嚴重變形,能證明此概念具備可行性,未來能用金屬、非金屬、新型陶瓷材料,可用來製作於義齒、骨頭、義肢、藝術品等客製化產品。


The purpose of this research is to transmit an idea ultilizing copying mode to construct rapid modeling, getting 3D model of the targets with 3D scaning techniques ultilizing light reflection instead of contacting, in spite of copying the model of the original target, it could edit the appearance with personal preference to make the new model.
The material uses traditional ceramic compact and processes before sintering. Ultilizing four-axis machining of CAD(Computer Aided Design) and CAM (Computer Aided Manufacturing) manufacturing techniques to reach the goal of rapid manufacture products and diverse changes.
According the upper experiment results, Artec Spider is the most proper scaning machine.The main reason is that it could scan the target with high reflectivity directly and completely.And it have wide scaning range, portableness , high resoution and precision.
The cross section of the compact has a dense structure without obvious edges and 2MPa fracture strengthness which could process basicly. Best processing condition: depth max 5mm, rotational speed under 1000rpm and feed rate was 400mm/min.
Example testing finds that the working surfaces don't have micro cracks and shape changing after sintering, and it could prove that the idea is workable.
It could be used in producing customized products for artificial teeth, bones and art works with metal, non-metal and new ceramic matreials in the future.

目錄 摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 X 表目錄 XVII 第一章 緒論 1 1.1 前言與研究背景 1 1.2 研究動機與目的 2 1.3 論文架構 4 第二章 基礎理論回顧 6 2.1 3D掃描相關介紹 6 2.1.1 量測總類與原理 6 2.1.2 影響點資料精度要素 8 2.1.3 點資料處理 12 2.1.4 點資料三角網格化 13 2.1.5 多重資料接合 15 2.1.6 建立曲線與曲面 18 2.2 影響生胚加工成型要素 20 2.2.1 壓力對生胚強度的影響 20 2-2-2黏結對生胚強度的影響 21 2.2.3 加工法的影響 22 2.3 陶瓷加工機制 23 2.3.1 斷裂與裂縫產生機制 23 2.3.2 硬脆材料移除原理 24 2.3.3 預燒結切削 25 2.3.4生胚加工 27 第三章 實驗步驟 29 3.1 3D掃描快速建立加工幾何體 29 3.1.1不同掃描器性能評估與選用 31 3.1.2 掃描點資料後處理 34 3.1.3 實驗設備介紹 36 3.2 加工材料備製 38 3.2.1 胚體擠製 39 3.2.2 彎曲破壞強度測試 40 3.2.3 燒結條件測試 42 3.2.4 燒結收縮測試 42 3.2.5實驗設備介紹 42 3.3 加工參數測試 47 3.3.1 基本加工能力測試與切屑分析 48 3.3.2 定義最佳加工參數 49 3.3.3 加工面裂紋觀察 50 3.3.4 加工面粗糙測試 50 3.3.5 實驗設備介紹 50 3.4實例測試 52 3.4.1 加工路徑建構與模擬 53 3.4.2加工成型測試 54 3.4.3實驗設備介紹 55 第四章 實驗結果與討論 56 4.1 掃描器評估與CAD加工模型建構 56 4.1.1 不同掃描器性能測試結果 56 4.1.2 掃描器台的選用 68 4.1.3 設計掃描圖檔與建立CAD加工幾何圖檔 69 4.2 加工材料分析結果 73 4.2.1 原始粉末分析 73 4.2.2 抗彎強度 74 4.2.3 定義燒結曲線 76 4.2.4 燒結收縮率 78 4.3 加工測試結果 79 4.3.1 生胚加工性測試結果 79 4.3.3 不同銑削參數之裂紋觀察 84 4.3.4 不同銑削參數之表面粗糙度比較 94 4.4 實例測試結果 101 4.4.1 路徑建構與模擬結果 101 4.4.2掃描圖檔加工評估 104 第五章 結論 107 第六章 文獻參考 109

1. Lee,K.H., Woo,H., "Use of reverse engineering method for rapid product development", Computers & industrial engineering, 1998 , vol.35, Pages 21-24.
2. Yan,X., Gu,P., "A review of rapid prototyping technologies and systems", Computer-Aided Design, 1996, vol.28, Pages 307-318.
3. Varady,T., Martin,R.R., Cox,J., "Reverse engineering of geometric models—an introduction", Computer-Aided Design, 1997, vol.29, Pages 255-268.
4. Zhang,Y., "Research into the engineering application of reverse engineering technology", Journal of Materials Processing Technology, 2003, vol.139, Pages 472-475.
5. Carmignato,S., Savio,E., "Traceable volume measurements using coordinate measuring systems", CIRP Annals - Manufacturing Technology, 2011, vol.60, Pages 519-522.
6. 金濤、童水光,“逆向工程技術”,新文京開發,2005。
7. 范光照、彰明、姚宏宗、許智欽、鄭正元,“逆向工程技術及應用”,高立圖書有限公司, 2005。
8. Bagci,E., "Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: Three case studies", Advances in Engineering Software, 2009 ,vol.40, Pages 407-418.
9. Hicks,R.原著、莊勝雄譯,“相機與鏡頭:實用的攝影技巧”,1997。
10. Herráez,J., Martínez,J.C., Coll,E., Martín,M.T., Rodríguez,J., "3D modeling by means of videogrammetry and laser scanners for reverse engineering ", Measurement, 2016, vol.87, Pages 216-227.
11. 黃衍介,“近代實驗光學”,東華書局出版, 2005。
12. 康茂龍,“視覺檢測系統光源之應用”, 中華印刷科技年報,2012,第二十九卷四期,第25~51頁。
13. Park,S.C., Chang,M., "Reverse engineering with a structured light system", Computers & Industrial Engineering, 2009, vol.57, Pages 1377-1384.
14. Lin,Y.P., Wang,C.T., Dai,K.R., "Reverse engineering in CAD model reconstruction of customized artificial joint", Medical Engineering & Physics , 2005, vol.27, Pages 189-193.
15. Peng,Y.H., Yin,Z.W., "The algorithms for trimmed surfaces construction and tool path generation in reverse engineering", Computers & Industrial Engineering,2008, vol.54, Pages 624-633.
16. Guo,B., "Surface reconstruction: from points to splines ", Computer-Aided Design, 1997, vol.29, Pages 269-277.
17. Kalay,Y. E., "Modelling polyhedral solids bounded by multi-curved parametric surfaces", Computer-Aided Design, 1983, Pages 141-146.
18. Piegl,L.A., Tiller,W., "Parametrization for surface fitting in reverse engineering ", Computer-Aided Design, 2001, vol.76, Pages 593-603.
19. Hsiao,S.W., Chuang,J. C., " A reverse engineering based approach for product form design ", Design Studies, 2003, vol.24, Pages155-171.
20. Paul,J.B., McKay,N.D., "Method for registration of 3-D shapes", In Robotics-DL tentative, 1992, Pages 586-606.
21. 陳俊諺,“利用 3D 多重掃描資料建構多面體架構之實體模型”,國立中正大學機械研究所碩士論文,2000。
22. Li,L., Schemenauer,N., Peng,X., Zeng,Y., Gu,P., "A reverse engineering system for rapid manufacturing of complex objects", Robotics and Computer-Integrated Manufacturing, 1992, vol.18, Pages 53-67.
23. Werner,A., Skalski,K., Piszczatowski,S., Świȩszkowski,W., Lechniak,Z., "Reverse engineering of free-form surfaces", Journal of Materials Processing Technology, 1998, vol.76, Pages 128-132.
24. Sarkar,B., Menq,C.H., "Smooth-surface approximation and reverse engineering ", Computer-Aided Design, 1991, vol.23, Pages 623-628.
25. German,R.M., Bose,A., "Injection Molding of Metals and ceramics" ,Metal Powder Industries Federation,1997 vol.02, Pages 311-314..
26. German,R.M., Karl,F.H., Lin,S.T., "Key issues in powder injection molding" ,American Ceramic Society, 1991, vol.70,Pages 1294-1302.
27. Tremblay,L., Chagnon,F., Thomas,Y., Gagné,M., "Green Machining Of P/M Parts Using Enhanced Green Strength Lubricating Systems", SAE Technical Paper , 2001.
28. Robert-Perron,E., Blais,C., Pelletier,S., Thomas,Y., "Drilling of high quality features in green powder metallurgy components " , Materials Science and Engineering, 2007, vol.45, Pages 195-201.
29. Desfontaines,M., Jorand,Y., Gonon,M., Fantozzi,G.,"Characterisation of the green machinability of AlN powder coMPacts" , Journal of the European Ceramic Society,2005, vol.25, Pages 781-791.
30. Nunn,S.D., Kirby,G.H., "Green machining of gelcast ceramic materials " ,Ceramic Engineering Science Proceedings, 1999, vol.17, Pages 209-213.
31. Besshi,T., Sato,T., Tsutsui,I., "Machining of alumina green bodies and their dewaxing", Journal of Materials Processing Technology, 1999, vol.95, Pages 133-138.
32. Avci,G., Akhlaghi,O., Ustbas,B., Ozbay,C., Menceloglu,Y.Z., “A PCE-based rheology modifier allows machining of solid cast green bodies of alumina”, Ceramics International, 2016, vol.42, Pages 3757-3761.
33. Sheppard,L.M., "Green Machining-Tools and Considerations for Machining Unfired Ceramic Parts" , Ceramic Industry, 1999, vol.149, Pages 65-76.
34. 黃邵衍,“利用生胚加工成型陶瓷葉輪轉子”,國立中山大學-機械與機電工程學系研究所,2007。
35. Callister.W. D, Rethwisch.D.G, "Materials science and engineering" , New York: Wiley, 2007, Pages 665-715.
36. 黃忠良,“精密陶瓷加工-硬脆材料的精密機械加工”, 1985年,復漢出版社,第40~64頁。
37. Luo,S.Y., Liao,Y.S., Tsai,Y.Y., "Wear characteristics in turning high hardness alloy steel by ceramic and CBN tools", Journal of Materials Processing Technology, 1999, vol.88, Pages 114-121.
38. 莊東漢,”材料破損分析”,五南圖書出版股份有限公司,2007年,第14~16、117~152、200~329頁。
39. Li,J.Z., Wu,T., Yu,Z.Y., Zhang,L., Chen,G.Q., Guo,D.M., "Micro machining of pre-sintered ceramic green body", Journal of Materials Processing Technology, 2012, vol.17, Pages 571-579.
40. Zhang,B., Zheng.X.L, Tokura,H., Yoshikawa,M., "Grinding induced damage in ceramics", Journal of Materials Processing Technology, 2003, vol.123, Pages 353-364.
41. Filser,F., Kocher,P., Gauckler,L.J., "Net-shaping of ceramic components by direct ceramic machining" , Assembly Automation, 2003, vol.23, Pages 382-390.
42. Schönholzer,U.P., Filser,F., Kocher,P., Gauckler,L.J.,"Fabrication of a Surface Pattern in Zirconia", Ceramic Bulletin, 2000, Pages 45-47.
43. Reed,J.S., Runk,R.B., "Treatise on Material Science andTechnology", Academic Press, 1976, vol.123, Pages77-98.
44. Mutsuddy,B.C., Ford.R,G., "Ceramic injection molding", Springer Science & Business Media, 1994 vol.01, Pages 01-50.
45. Mohanty,S., Rameshbabu,A.P., Mandal,S., Su,B., Dhara,S., " Critical issues in near net shape forming via green machining of ceramics: A case study of alumina dental crown", Journal of Asian Ceramic Societies, 2013, vol.01, Pages 274–281.
46. “3D 白光光柵式照相掃描系統E3 Scan-SS”,產品簡介,三維數碼科技股份有限公司。
47. "Artec Spider™ scanner ", Product Introduction, Artec 3D scanners.
48. "Sense Scanner 3D scanner", Product Introduction, 3D Systems.
49. "Stereo Scan3D R4 scanner", Product Introduction,AICON 3D.
50. Ng,S.H., Hull,J.B., Henshall,J.L., "Machining of novel alumina / cyanoacrylate green ceramic coMPacts ", Journal of Materials Processing Technology, 2006, vol.175, Pages 299-305.
51. 楊榮川, “材料測試與分析”,五南圖書出版社,2002年,第12~78、104~105頁。
52. 胡惠沛,“高速端銑削石墨材料之現象分析”,國立台灣大學機械工程學系碩士論文,2003。

無法下載圖示 全文公開日期 2021/11/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE