簡易檢索 / 詳目顯示

研究生: 梁閔升
Ming - Sheng Liang
論文名稱: 探討於二階段化學氣相沈積銅膜之第一階段所沈積之氧化亞銅膜的還原過程
Ethyl Alcohol Reduction of the Cu2O Film Deposited by MOCVD with Cu(hfac)2 as the Precursor and Water as the Additive
指導教授: 李嘉平
Chiapyng Lee
口試委員: 顏怡文
none
陳能國
none
林順堂
none
李文鴻
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 137
中文關鍵詞: 化學氣相沈積
外文關鍵詞: Copper
相關次數: 點閱:235下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要是研究先以Cu(hfac)2.H2O為先驅物並外加水來沈積氧化亞銅(Cu2O)薄膜之後,再利用乙醇將Cu2O薄膜還原成Cu薄膜的二階段化學氣相沈積成長方式之第二階段乙醇還原的過程。
首先我們固定Cu2O薄膜的成長溫度為260℃,沈積時間30分鐘,來成長45nm的Cu2O薄膜,再固定還原時間3分鐘,以乙醇在不同還原溫度將Cu2O薄膜還原成Cu薄膜。從在不同溫度還原所得之薄膜的電子能譜化學分析儀(ESCA)圖譜、電阻率、膜厚及銅原子在膜中的濃度變化可知,隨著還原溫度的提高,Cu2O薄膜越快速的還原成Cu薄膜。其中以280℃的還原溫度,還原時間3分鐘,45nm的Cu2O薄膜即可還原成25nm的Cu薄膜,銅原子在銅膜中的含量可到達95(at.%)。
之後,將還原溫度固定在220及260℃,再用乙醇以不同的還原時間來將Cu2O薄膜還原成Cu薄膜,從薄膜厚度、電阻率、ESCA圖譜、銅原子在膜中的濃度變化可知,隨著還原時間增加,Cu2O薄膜逐漸還原成Cu薄膜。藉由ESCA的縱深分佈(depth profile)分析發現,還原溫度220℃、260℃,經過5分鐘的還原,薄膜中銅原子的濃度都約為95(at.%),因此可知我們所沈積之銅膜具有高純度、緻密的膜面、較低的電阻率(89μΩ-cm),且低污染物含量的優點。


This study investigated the reduction process of Cu2O film which was deposited in the first step of a two-step MOCVD using the water vapor as the additive and Cu(hfac)2 as the precursor .
First, a 45 nm cuprous oxide (Cu2O) film was grown at 260℃ for thirty minutes. Then, Cu2O films with a thickness of 45 nm reduced to metallic Cu films by the exposure to ethyl alcohol at different reduction temperatures for three minutes. The experiment results of XPS analysis, resistivity, thickness, and the Cu atom concentration of the films deposited at various reduction temperatures show that with an increase in the reduction temperature, the Cu2O films could be reduced to Cu films more sufficiently. The 45 nm Cu2O film was reduced to 25 nm Cu films at 280℃after three minutes of reduction. The Cu atom concentration in Cu film was around 95 at.%.
The Cu2O films were reduced to Cu films at 220 and 260℃ for different reduction times. The experiment results of film thickness, resistivity, the XPS spectrum, and the Cu atom concentration of the films deposited with various reduction time showed that with an increase in the reduction time, the Cu2O films could be reduced to Cu films more sufficiently. The Cu atom concentration is about 95 at.% for a reduction time of five minutes at 220 and 260℃. The Cu films deposited by the two-step MOCVD have high purity, smooth surface, low resistivity, and low concentrations of impurities.

中文摘要………………………………………………………………..I 英文摘要………………………………………………………………..II 誌謝……………………………………………………………………..III 圖表索引………………………………………………………………..IV 第一章 緒論…………………………………………………………….1 第二章 儀器設備與實驗程序…………………………………………15 2.1 實驗設備………………………………………………………..15 2.1.1磁控射頻濺鍍系統………………………………………...15 2.1.2有機金屬化學氣相沉積系統……………………………...17 2.1.3合成系統…………………………………………………...24 2.2 分析儀器、實驗藥品與材料……………………………………28 2.2.1分析儀器…………………………………………………...28 2.2.2實驗藥品…………………………………………………...29 2.2.3實驗材料…………………………………………………...31 2.3 實驗程序………………………………………………………..32 2.3.1 TaNx薄膜之濺鍍………………………………..................32 2.3.2 TaNx薄膜之濺鍍步驟……………………………………..33 2.3.3 TaNx薄膜之分析…………………………………………..36 2.3.4 Cu(hfac)2先驅物之合成…………………………………...39 2.3.5 有機金屬化學氣相沉積銅膜……………………………..42 2.3.5.1 銅膜沉積條件…………………………………………...42 2.3.5.2 銅膜分析步驟…………………………………………...43 2.3.5.3 銅膜沉積步驟…………………………………………...44 2.3.5.4 系統清潔步驟…………………………………………...46 第三章 結果與討論…………………………………………………....47 3.1 二階段沈積銅膜還原溫度效應探討.…………………………47 3.2 以乙醇還原Cu2O膜之還原時間效應探討…………………...70 3.2.1 還原溫度220℃……………………………………….......70 3.2.2 還原溫度260℃……………………………………….......88 3.2.3 不同還原溫度下,還原結果比較………………………..105 第四章 結論…………………………………………………………..117 參考文獻………………………………………………………………118

1. J. W. Mayer et al. Material Research,BD11, Vol.19,1994,p5
2. 張鼎張,鄭晃忠與楊正杰,毫微米通訊期刊第五卷第三期, 1998, p22
3. C. Y. Chang et al., ULSI Technology ,New York,1996, p371
4. K. Holloway et al., Journal of Applied Physics,Vol.71,n11, Jun 1,1992, p5433
5. K. H. Min et al., Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, Vol.14, n5, Sep-Oct,1996, p3263
6. 黃茂業,新興機械產業技術簡訊第28期, 2004
7. S. Venkatesan et al, Technical Digest International Electron Devices Meeting, 1997, p769-772
8. D. Edelstein et al, Technical Digest International Electron Devices Meeting, 1997, p936
9. 林良昌,半導體科技, 1999, p67
10. P. Burggraaf et al., Solid State Technology, Vol.43, n 1, Jan, 2000,p31
11. M. E. Gross et al., Solid State Technology,Vol.42,n1-8, August,1999,p47-52
12. K. Hanaoka et al., Japanese Journal of Applied Physics,Vol.34,n5A,May,1995
p 2430-2439
13. W. W. Lee et al., Thin Solid Films,Vol.262, n1-2,June15,1995,p39-45
14. D. Temple et al., Journal of the Electrochemical Society,Vol.136,n11,1989,
p3525-3529
15. A. Jain et al., Journal of the Electrochemical Society,Vol.140,1993,p1434-1439
16. J. Farkas et al., Journal of the Electrochemical Society,Vol.141,1994,p3539-3546
17. M. B. Naik et al., Thin Solid Films, Vol.262, 1995, p60-66
18. W. J. Lee et al., Journal of Materials Science,Vol.7,1996, p111-117
19. J. C. Chiou et al., Journal of the Electrochemical Material,Vol.23,n4,1995, p383~390
20. D. H. Kim et al., Chemical Engineering Communications,Vol.152-153,1996,
p307-317
21. K. V. Guinn et al., Surface Science,Vol.295,n1-2,1993, p219-229
22. M. E. Gross et al., Journal Vacuum Science Technology A,Vol.11,n1,1993,p66-77
23. L. H. Dubois et al., Journal of the Electrochemical Society,Vol.139,n11,1992,
p3295-3299
24. L. S. Hong et al., Japanese of Journal Applied Physics,Vol.39,2000, p1908
25. A. Devi et al., Journal of Material Research, Vol.13, n3,1998, p687
26. Yu-Neng Chang et al. Materials Research Society Symposium Proceedings,
Vol.280,1993, p649
27. J. A. Bertrand et al., Inorganic Chemistry, Vol.5, n3,1966,p489
28. Narendras et al., Journal of the Electrochemical Society ,Vol.146,1999,p1041
29. N. Awaya et al., Japanese Journal of Applied Physics ,Vol.32, 1993, p3915
30. J. McAndrew et al., Journal of Material Research,Vol.17,n9,2002,p2394
31. C.Ming Chiang et al., Journal of Physical Chemistry,Vol.97, n 45, Nov 11,1993, p11781-11786
32. J. Pinkas et al., Chemistry of Materials,Vol.7,n7,1995, p1589
33. 周翁鼎, “碩士論文”,國立台灣科技大學化學工程所, 1999
34. A. E. Kaloyeros et al., Journal of Electronic Materials,Vol.19,1990,p271
35. J.Y. Kim et al., Thin Solid Films, Vol.330,1998, p190
36. N. Awaya et al., Japanese Journal of Applied Physics Vol.32,1993, p3915
37. Alain E. Kaloyeros et al., Thin Solid Films,Vol.262,1995,p20
38. 曾志遠, “碩士論文”,國立台灣科技大學化學工程所, 2002
39. 彭雅惠, ”碩士論文”,國立台灣科技大學化學工程所, 2004
40. Yasushi Sawada et al., Journal of Physics D: Applied Physics, Vol.29, n10, 1996, p2539-2544
41. J.Y. Kim et al., Journal of the American Chemical Society, Vol.125, 2003, p10684-10692
42. J.A. Rodriguez et al., Catalysis Letters,Vol.85,2003,p247
43. Y.Champion et al., Materials Science and Engineering A,Vol.360,2003,p258-263
44. Handbook of X-ray Photoelectron Spectroscopy, p86-87
45. P. D. Kirsch et al., Journal of Applied Physics,Vol.90, No.8, 2001,p4256
46. Marcelo J. L. Gines et al., Journal of Catalysis,Vol.176, p155
47. P. J. Toscano et al., Journal of the American Chemical Society,1993,
p3173

QR CODE