簡易檢索 / 詳目顯示

研究生: 陳弘軒
Hung-Hsuan Chen
論文名稱: 以雙操作模態合成傳輸線實現之全平面化水陸兩用天線與新型溶液檢測晶片之研究
A Study of Fully Planar Amphibious Antenna and On-chip Liquid Detecting Sensor Using Dual-operational Mode Synthesized Transmission Lines
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 林坤佑
Kun-You Lin
楊成發
Chang-Fa Yang
廖文照
Wen-Jiao Liao
賴季暉
Chi-Hui Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 107
中文關鍵詞: 水陸兩用天線雙環境天線雙模態合成傳輸線自動切換匹配網路整合被動元件製程溶液檢測漏液監測系統複數介電常數
外文關鍵詞: amphibious antenna, dual environment antenna, dual mode synthesized transmission line, dual mode matching network, integrated passive device, liquid sensor, water leak sensing system, complex permittivity
相關次數: 點閱:260下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文先於印刷電路板製程,提出以創新架構實現全平面水陸兩用天線之設計。該水陸兩用天線以單極天線為主體,搭配特殊設計之水陸雙模態合成傳輸線,實現可自動切換之雙環境匹配網路,以達成天線於空氣與水中之同時匹配,使其操作於兩環境時均有良好之阻抗匹配及高輻射效率。該水陸兩用天線可大幅改善空氣模態之輻射效率,其改善幅度達137 %。經模擬與量測結果,充分驗證該天線具雙環境操作之特性。
    本論文更進一步,以矽基板整合被動元件製程實現一款新型溶液檢測晶片。該晶片以雙模態合成傳輸線架構為基礎,運用其隨環境改變電氣響應之特點,觀察電氣響應之變化趨勢,建立介電常數預測模型,即可實現溶液檢測之功能。若與現有文獻相比,本晶片設計於實際應用時,僅需沾附一滴液體,即立刻改變原有之電氣響應,具有非常優秀的反應速度與便利性。
    最後,吾人乃將該檢測晶片直接與天線進行整合,使晶片整合天線具備感測漏水之能力,其模擬與量測響應亦十分吻合,未來可實際應用於工業漏液檢測系統。


    In this thesis, a fully planar amphibious antenna is developed with the printed circuit board (PCB) technology. The amphibious monopole antenna is realized by inserting a dual-operational mode matching network to the feeding line to achieve better impedance matching and higher radiation efficiency when operating both in the air and water. The proposed matching network simply consists of a dual-operational mode synthesized transmission line and a common delay line. Benefiting from the unique properties of the matching network, the total efficiency of the amphibious antenna can be significantly improved up to 137 % when operating in the air. The simulated and measured results are compared to verify the operation principle of the antenna.
    Secondly, an on-chip liquid detecting sensor based on dual-mode synthesized transmission lines is studied and realized on the silicon-based integrated passive device (IPD) process. Benefiting from the synthesized transmission line, the electrical response of the sensor could be dramatically changed when the chip is covered by a liquid drop with different compound. By collecting the experimental data, it is possible to create a simple model for estimating the complex permittivity of the liquid under test. Comparing with the liquid detecting sensors in the literature, the proposed one can verify the electrical characteristic of the liquid even with a small drop.
    The on-chip liquid detecting sensor could also be integrated with an antenna to facilitate water leaksensing. The simulated and measured results are in good agreement, which supports the applicability of the proposed design to practical systems.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 5 1.4 論文組織 5 第二章 以雙模態合成傳輸線於印刷電路板製程實現之全平面化水陸兩用天線 7 2.1 前言 7 2.2 電路架構與設計原理 8 2.2.1 設計原理 8 2.2.2 天線單元設計 10 2.2.3 水陸雙模態合成傳輸線之設計原理 14 2.2.4 水陸雙模態合成傳輸線之響應分析 23 2.3 全平面化水陸兩用天線 27 2.3.1 整合電路佈局 27 2.3.2 實驗結果與討論 30 2.4 結語 41 第三章 以IPD製程實現之新型溶液檢測晶片與漏液感測系統之天線設計 42 3.1 前言 42 3.2 矽基板整合被動元件製程 43 3.3 溶液檢測晶片與漏液感測系統之設計原理 45 3.4 新型溶液檢測晶片設計 46 3.4.1 雙模態合成傳輸線晶片之電路設計與佈局 46 3.4.2 雙模態合成傳輸線晶片之模擬與量測結果 52 A. 晶片操作於空氣介質之模擬與量測 54 B. 晶片沾附水滴之模擬與量測 57 3.5 漏液感測系統之天線整合 61 3.5.1 天線單元設計 61 3.5.2 晶片整合天線之電路佈局 63 3.5.3 實驗結果與討論 65 3.6 溶液介電常數及濃度檢測 73 3.6.1 介電常數預測模型之推導 73 3.6.2 介電常數預測模型之實際量測結果 80 3.7 結語 83 第四章 結論 84 4.1 總結 84 4.2 未來發展 85 參考文獻 86

    [1] A. G. Miquel, “UWB antenna design for underwater communications,” Masters thesis, Universitat Politècnica de Catalunya, Spain, 2009.
    [2] D. A. James, A. Galehdar, and D. V. Thiel, “Mobile sensor communications inaquatic environments for sporting applications,” in Proc. Engineering, 2010, vol. 2, pp. 3017–3022.
    [3] A. M. Abbosh, D. A. James, and D. V. Thiel, “Compact UHF antennain aquatic environments for mobile sporting applications,” in Proc. Antennasand Propagation Society Int. Symp., 2010, pp. 1–4.
    [4] Steven G. O’Keefe and Steven Perhirin, “A passive auto-switching amphibian antenna,”IEEETrans. Antennas Propagat., vol. 62, no. 6, pp. 3389-3392, June 2014.
    [5] H. Aumann, E. Kus, B. Cline, and N. W. Emanetoglu, “A 5.8 GHz harmonic RF tag for tracking amphibians,” presented at the IEEE Int. Conf. Wireless Inform. Technol. Syst, Nov. 2012
    [6] C.-W. Wang, T.-G. Ma and C.-F. Yang, “A new planar artificial transmission line and its applications to miniaturized Butler matrix,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2792–2801, Dec. 2007.
    [7] C.-H. Lai, and T.-G. Ma, “Novel synthesized microstrip line with quasi-elliptic response for harmonic suppressions,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, pp. 1540–1543, 2010.
    [8] C.-C. Wang, C.-H. Lai, and T.-G. Ma, “Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2266–2276, Aug. 2010.
    [9] C.-C. Wang, H.-C. Chiu, and T.-G. Ma, “A slow-wave multilayer synthesized coplanar waveguide and its applications to rat-race coupler and dual-mode filter,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 7, pp. 1719–1729, July 2011.
    [10] J.-W. Tsai, C.-H. Wu and T.-G. Ma, “Novel Dual-Mode Retrodirective Array Using Synthesized Microstrip Lines,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3375–3388, Dec. 2011.
    [11] J.-Y. Zou, C.-H. Wu, and T.-G. Ma, “Miniaturized Diplexer Using Synthesized Microstrip Lines With Series LC Tanks,” IEEE Microw. Wireless Comp. Lett., vol. 60, no. 11, pp. 5118–5128, Nov. 2012.
    [12] K.-C. Lin, C.-H. Wu, C.-H. Lai and T.-G. Ma, “Novel Dual-Band Decoupling Network for Two-Element Closely Spaced Array Using Synthesized Microstrip Lines,” IEEE Trans. Antennas Propagat., vol. 22, no. 7, pp. 354–356, July 2012
    [13] A. P. Gregory and R. N. Clarke, “A review of RF and microwave techniques for dielectric measurements on polar liquids,” IEEE Trans. Dielectr. Electr. Insul., vol. 13, no. 4, pp. 727–743, Aug. 2006.
    [14] B. Kapilevich and B. Litvak, “Optimized microwave sensor for online concentration measurements of binary liquid mixtures,” IEEE Sensors J., vol. 11, no. 10, pp. 2611–2616, Oct. 2011.
    [15] H. Kawabata and Y. Kobayashi, “Accurate measurements of complex permittivity of liquid based on a TM010mode cylindrical cavity method,” in Eur. Microw. Conf., 2005, pp. 1–4.
    [16] K.B.Yu, S. G. Ogourtsov,V.G.Belenky,A.B.Maslenikov, andA. S. Omar, “Accuratemicrowave resonantmethod for complex permittivity measurements of liquids,” IEEE Trans.Microw. Theory Techn., vol. 48, no. 11, pp. 2159–2164, Nov. 2000.
    [17] M. Neshat, S. Gigoyan, D. Saeedkia, and S. Safavi-Naeini, “Travelingwave whispering gallery resonance sensor in millimeter-wave range,” Electron. Lett., vol. 44, no. 17, pp. 1020–1022, Aug. 2008.
    [18] J. Kim, A. Babajanyan, A. Hovsepyan, K. Lee, and B. Friedman, “Microwave dielectric resonator biosensor for aqueous glucose solution,”Rev. Sci. Instrum., vol. 79, pp. 1–3, Aug. 2008, Art. ID 086107.1
    [19] A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, “High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization,” IEEE Sensors J., vol. 14, no. 5, pp. 1345–1351, May 2014.12
    [20] M.H. Zarifi, A. Sohrabi, P.M. Shaibani, M. Daneshmand, T. Thundat,“Detection of Volatile Organic Compounds Using Microwave Sensors,”IEEE Sensors J., vol. 15, no. 1, pp. 248-254, Jan. 2015.
    [21] H. J. Lee, H. S. Lee, K. H. Yoo, and J. G. Yook, “DNA sensing using split-ring resonator alone at microwave regime,” J. Appl. Phys., vol. 108, pp. 1–6, Jul. 2010, Art. ID 014908.
    [22] T. Chretiennot, D. Dubuc, and K. Grenier, “A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 2, pp. 972–978, 2013.
    [23] W. J. Ellison, “Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C,”J. Phys. Chem. Ref. Data, Vol. 36, No. 1, 2007
    [24] Adel Megriche1, Abdellatif Belhadj, Arbi Mgaidi, “Microwave dielectric properties of binary solvent water-alcohol, alcohol-alcohol mixtures at temperatures between -35°C and +35°C and dielectric relaxation studies,”Mediterranean Journal of Chemistry., vol. 1, no. 4, pp. 200-209, 2012
    [25] H.-C. Lu, C.-S. Yeh, S.-A. Wei, and Y. T. Chou, “60 GHz CPW dual-mode rectangular ring bandpass filter using integrated passive device process,” in 2010 Asia-Pacific Microw. Conf. Proceedings, Dec. 7-10, pp. 1883–1886.
    [26] W.-C. Lin, T.-M. Shen, C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “A miniaturized V-band bandpass filter using integrated passive devices technology” in 2010 Asia-Pacific Microw. Conf. Proceedings, Dec. 7-10, pp. 1170–1173.

    [27] K. Zoschke, J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Scherpinski, H. Reichl, and F.-J. Schmuchkle, “Thin Film Integration of Passives - single components, filter, integrated passive device,” in Electronic Components and Technology Conference, 2004. Proceedings. 54th, June 1-4, pp. 294–301 Vol. 1.
    [28] R. C. Frye, R. Melville, G. Badakere, Y. Lin, and K. Liu, “Theory of compact narrow-band directional couplers and implementation in silicon IPD technology,” in 2009 MTT-S Int. Microw. Dig., Boston, MA, June 7-12, pp. 993–996.
    [29] R. C. Frye, K. Liu, and Y. Lin, “Three-stage bandpass filters implemented in silicon IPD technology using magnetic coupling between resonators,” in 2008 MTT-S Int. Microw. Dig., Atlanta, GE, June 15-20, pp. 783–786.
    [30] Chretiennot, T.; Dubuc, D.; Grenier, K., "Double stub resonant biosensor for glucose concentrations quantification of multiple aqueous solutions," Microwave Symposium (IMS), 2014 IEEE MTT-S International , vol., no., pp.1,4, 1-6 June 2014

    QR CODE