簡易檢索 / 詳目顯示

研究生: 李欣浤
Hsin-Hung Lee
論文名稱: 二階段有機金屬化學氣相沉積銅晶種層及其在積體電路之銅製程上的應用
Growth of Copper Seed Layer by Two-Step Metal- Organic Chemical Vapor Deposition and It‘s Applications on Cu Metallization of IC Processing
指導教授: 李嘉平
Chiapyng Lee
口試委員: 徐新光
Shin-Guang Shyu
陳信文
Sinn-Wen Chen
季昀
Yun Chi
張翼
Yi Chang
高振宏
C.Robert Kao
顏怡文
Yee-wen Yen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 191
中文關鍵詞: 二階段有機金屬化學氣相沉積晶種層氧化銅金屬化
外文關鍵詞: Cu, cuprous oxide(Cu2O), Metallization, Seed layer, Two-step MOCVD
相關次數: 點閱:288下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要提出一種新穎的二階段化學氣相沉積(Metal-Organic Chemical Vapor Deposition)成長銅晶種層(Seed layer)於氮化鉭(TaNx)阻障層薄膜的應用之可行性評估。首先以自行合成的Cu(hfac)2為先驅物,沉積時外加添加物沉積(Cu2O+Cu)薄膜再用乙醇當還原劑還原成銅薄膜。之後觀察沉積溫度與沉積時間(Cu2O+Cu)和銅薄膜之表面型態、結晶結構、薄膜電阻值及化學組成O/Cu比之影響,以尋求符合銅製程中成長晶種層的製程需求。
首先在合成先驅物方面,由自行合成和購買的FT-IR、DSC和TGA實驗結果顯示出自行合成的先驅物有極高的純度。之後利用自行合成的先驅物進行二階段沉積薄膜,由實驗結果所顯示在第一階段不同沉積溫度下,以水為外加物成長的薄膜,由XPS定量分析得到皆為氧化亞銅(Cu2O)和金屬銅(Cu)的混合,在250℃時金屬銅含量為28.39 at.%,而且隨著沉積溫度的上昇,金屬銅原子的含量也隨之提高;在沉積溫度250~275℃之間,皆可以成長緻密且連續的(Cu2O+Cu)薄膜,其顆粒大小為28~45nm之間:在第二階段還原反應中,以乙醇為還原劑,相同溫度還原(Cu2O+Cu)薄膜,其結果得到在任何溫度下還原,由XPS分析得到皆為高純度的金屬銅,而沉積溫度275℃之前,顆粒大小和表面粗糙度並沒有太大的變化,而到了300℃之後,顆粒開始聚集,其顆粒大小和表面粗糙度為110 nm和15.27 nm。
而沉積時間效應是固定在沉積溫度275℃下二階段成長銅薄膜,隨著沉積時間上升,銅膜厚度也隨之上升。在沉積時間5分鐘以後才會形成連續的薄膜,而沉積15分鐘之後,顆粒因為表面自由能的上升而開始聚集,沉積時間30分鐘後,顆粒大小為98nm。而由四點探針量測不同時間和溫度下的片電阻值發現隨著沉積時間和溫度的增加,片電阻隨之下降。在沉積溫度300℃,沉積時間30分鐘可以獲得一最低之電阻率2.78 μΩ-cm。
由實驗結果所顯示的不同比例外加物效應是在固定沉積溫度260℃下二階段成長銅膜,隨著乙醇比例的增加,第一階段中(Cu2O+Cu)薄膜內所含的金屬銅也會隨之提高,但是無法一階段直接還原成銅膜,而在第二階段利用乙醇當還原劑,不同比例外加物所成長的(Cu2O+Cu)薄膜皆可以還原成高純度的銅膜,由此而推導出二階段成長的反應機制。此外,隨著乙醇比例的上升,沉積速率也跟著加快,而顆粒大小並未有明顯的改變。
利用此二階段成長方式成長銅晶種層於氮化鉭溝槽(trenches)中,由SEM微影像照片觀察到在沉積溫度260和275℃時都可以成長平坦且連續的晶種層,再利用電鍍銅的方式將成長晶種層的trenches填滿,發現到在電流密度20~10 mA/cm2時,trenches會產生孔洞(void),而電流降到7 mA/cm2時,可以將trenches填滿。之後由銅/氮化鉭/矽多層膜系統的銅膜附著能量測,發現在不同沉積溫度下,隨著沉積溫度的上升,銅膜和TaNx的平均接觸角也隨之上升,而附著能隨之下降;由以上實驗可知本研究成功的建立一套新的銅製程中成長晶種層之製程方法。


The feasibility of using a novel metal-organic chemical vapor deposition (MOCVD) technique to achieve the deposition of a thin and conformal copper film was examined. The deposition procedure consisted of two consecutive steps: an oxide deposition step followed by a reduction step. Copper(II)-1,1,1,5,5,5-hexafluoro-acetylacetonate hydrate (Cu(hfac)2•xH2O) was used as the copper precursor and the additive. The preformed copper oxide thin film was reduced to an elemental copper metal film through exposure to ethyl alcohol. Experiments results indicate that the surface morphology, crystalline structure, film resistivity, and chemical composition of the deposited (Cu2O+Cu) and Cu films.
Self-synthesis of Cu(hfac)2•xH2O and characterization with FT-IR、DSC、TGA where performed and Cu(hfac)2•xH2O was confirmed to be the product. In additional, the deposition of thin films on TaNx substrates was achieved in a cold-wall CVD reactor. The results of thin films deposition show that the concentration of metal Cu increased with the raise of the reaction temperature. At 250~275℃, the surface morphology of the (Cu2O+Cu) film was smooth and continuous. The morphology of Cu2O films obtained at 300℃ changed considerably, with large and well defined grains as depicted in the SEM image. After reducing step, the (Cu2O+Cu) film was completely reduced to the Cu film by alcohol. SEM and AFM indicate that the increase of roughness and grain sizes with the raise of temperature. The grain size and RMS were increased up to 110nm and 15.27 nm at 300℃.
The effect of deposition time on Cu films at 275℃ was that the thickness of Cu films increased with the deposition time. The surface morphology of the Cu film was smooth and continuous after 5 minute of deposition time. The grain size of Cu film increased with the deposition time. The grain size of Cu for 30 minutes of deposition time was 98 nm. In additional, the result shows that the best resistivity is 2.78 µΩ-cm at 300℃ for 30 minute of deposition time..
The preformed (Cu2O+Cu) thin film was reduced to an elemental copper metal film through exposure to ethyl alcohol. The proposed two-step MOCVD method was found to succeed in forming smooth and continuous thin copper films.
With the addition of ethyl alcohol, however, the (Cu2O+Cu) film was not reduced to the Cu metal film as expected. The preformed (Cu2O+Cu) film can only be reduced to an elemental Cu metal film through exposure to ethyl alcohol alone during a second step, i.e. the reduction step. In the current study, also found is that the metallic Cu concentration in (Cu2O+Cu) films and the deposition rate of (Cu2O+Cu) films increased with the raise of the ethyl alcohol mole fraction in the additive, a mixture of ethyl alcohol and water. These experimental results indicate that Cu(hfac)2•xH2O competes with ethyl alcohol for adsorption on the same metallic Cu active sites, and Cu(hfac)2•xH2O adsorbs much more strongly than ethyl alcohol. Based on these phenomena, the deposition mechanisms of the two-step MOCVD of Cu films can be determined.
The deposition of Cu films on TaNx trench substrates at 260~300℃ was conducted to demonstrate the applicability of this two-step MOCVD technique on patterned wafers. The deposited film was conformal and the step coverage was excellent. The electrodeposited Cu was used on the two-step MOCVD seed layer trenches. The deposited Cu completely fills these structures and no voids can be observed. To realize the Cu surface adhesive energies on TaNx films at different deposition temperature, we adopted the SEM observation, Young-Dupre equation. Experiment results indicated that Cu adhesive energies decreased with deposition temperature.
Finally, from our experiment results two-step MOCVD method succeeds in forming smooth and continuous thin copper films, which be used as high-quality seed layers for electroplating.

中文摘要 I 英文摘要 IV 英文摘要 VII 目錄 IX 圖索引 XI 表索引 XIX 第一章 緒論 1 1.1深次微米元件金屬導線的選擇 1 1.2金屬導線之發展概況 11 1.3銅製程應用於ULSI 16 1.4研究動機及方法 21 第二章 理論基礎與文獻回顧 22 2.1銅金屬薄膜成長方法 22 2.2銅金屬化合物先驅物的選擇 26 第三章 實驗設備與程序 38 3.1實驗設備 38 3.1.1磁控射頻濺鍍系統 38 3.1.2有機金屬化學氣相沉積系統 42 3.1.3合成系統 49 3.2分析儀器、實驗藥品與材料 53 3.2.1分析儀器 53 3.2.2實驗藥品及材料 56 3.3實驗條件 58 3.4實驗程序 59 3.4.1矽晶片之準備 59 3.4.2 TaNx薄膜之濺鍍 59 3.4.3先驅物Cu(hfac)2.H2O之合成 62 3.4.4二價銅先驅物之二階段銅膜成長步驟 65 3.4.4.1氧化亞銅成長步驟 65 3.4.4.2還原銅膜成長步驟 66 3.4.4.3清潔CVD系統 66 第四章 二階段化學氣相沉積銅膜成長 67 4.1銅先驅物Cu(hfac)2.H2O之化性及物性分析 67 4.1.1銅先驅物Cu(hfac)2.H2O之化學分析 67 4.1.2 銅先驅物Cu(hfac)2.H2O之熱分析 70 4.1.3先趨物Cu(hfac)2的合成成本分析 73 4.2基材TaNx薄膜的製備 74 4.3先驅物分壓之量測 78 4.4二階段化學氣相沉積銅膜成長 83 4.4.1沉積溫度效應 83 4.4.2沉積時間效應 112 4.4.3外加添加物之效應 125 4.4.4二階段反應成長之反應方程式 137 4.4.5外加乙醇和水(體積比1:1)之沉積溫度效應 140 第五章 二階段成長銅膜於銅製程之應用 154 5.1二階段化學氣相沉積銅晶種層之成長 154 5.2二階段化學氣相沉積成長銅膜之表面附著能量測 166 第六章 結論 174 參考文獻 179 符號索引 187 附 錄 189 作者簡介 190 論文著作 191

1. 陳力俊, “微電子材料與製程”, p.279 (2000).
2. The International Technology Roadmap for Semiconductors (2004).
3. S-P Heng et al, 1995 International Symposium on VLSI TSA, p.164.
4. 張俊彥, 鄭晃忠 “積體電路製程及設備技術手冊”, p.241 (1997).
5. 吳世全, “毫微米通訊”, 第六卷, 第三期, p.38 (1999).
6. R. Miller, Circuit Analysis Theory and Practice, Delmar Publishers, p.42 (1995).
7. W. A. P. Claassen, J. Bloem, J. Electrochem. Soc., 128(6) 1353 (1981).
8. 陳錦山、黃獻慶、鄭義冠, “真空科技”, 第十二卷, 第二期, p.26 (1999).
9. Hugh Baker, ASM Handbook Vol.3 Alloy Phase Digrams, 1992.
10. Shacham-Diamand, Y., Li J., Olowlafe, J. O., Russel, S., Tamou, Y., Mayer, J. W., Proc 9 Bienn Univ. Gov. Ind. Microelectron Symp. Publ. by IEEE Service Center, Piscataway, NJ, USA (IEEE cat. n91ch3027-0), p.210.
11. 楊文祿、吳其昌,深次微米後段金屬連線技術,真空科技,十二卷二期,p.44 (1999).
12. 張勁燕,深次微米矽製程技術,p.225 (2002).
13. 劉富臺,銅製成及低介電係數材料技術,電子月刊,五卷十二期,p.100 (1999).
14. M. J. Hampden-smith, T. T. Kodas, Polyhedron, 14, 699 (1995).
15. T. Kodas, M. J. Hampden-smith, The Chemistry of Metal CVD; VCH: Weinheim, 1994.
16. H.-K. Shin, M. J. Hampden-Smith, E. N. Duesler, T. T. Kodas, Inorg. Chem., Polyhedron, 10, 645 (1991).
17. H.-K. Shin, K. M. Chi, J. Farkas, M. J. Hampden-Smith, T. T. Kodas, E. N. Duesler, Inorganic Chemistry, 31, 424 (1992).
18. M. J. Hampden-Smith, T. T. Kodas, M. Paffett, J. D. Farr, H.-K. Shin, Chem. Mater., 2, 636 (1990).
19. G. Doyle, K. A. Eriksen, D. V. Engen, Organometallics, 4, 830 (1985).
20. S. W. Rhee, S. W. Kang, S. H. Han, Electrochemical and Solid-State Letters, 3, 135 (2000).
21. C. Roger, T. S. Corbitt. M. J. Hampden-Smith, T. T. Kodas, Appl. Phys. Lett., 65, 1021 (1994).
22. T. Q. Cheng, K. Griffiths, P. R. Norton, R. J. Puddephatt, Appl. Surf. Sci., 126, 303 (1998).
23. I. A. Rauf, R. Siemsen, M. Grunwell, R. F. Egerton, M. Sayer, J. Mater. Res., 14, 4345 (1999).
24. W. J. Lee, J. S. Min, S. K. Rha, S. S. Chun, C. O. Park, D. W. Kim, J. Mater. Sci., Mater. Electron., 7, 111 (1996).
25. A. Jain, K.-M. Chi, T. T. Kodas, M. J. Hampden-Smith, J. Electrochem. Soc., 140, 1434 (1993).
26. J. A. T. Norman, D. A. Roberts, A. K. Hochberg, P. Smith, G. A. Petersen, J. E. Parmeter, C. A. Apblett, T. R. Omstead, Thin Solid Films, 262, 46 (1995).
27. S. Kim, J. M. Park, D. J. Choi, Thin Solid Films, 320, 95 (1998).
28. J. Farkas, M. J. Hampden-Smith, T. T. Kodas, J. Phys. Chem., 98, 6763 (1994).
29. A. Jain, K.-M. Chi, T. T. Kodas, M. J. Hampden-Smith, J. D. Farr, M. F. Paffett, Chem. Mater., 3, 995 (1991).
30. T. H. Baum, C. E. Larson, J. Electrochem. Soc., 140, 154 (1993).
31. M. J. S. Dwear, Bull. Chem. Soc. Fr., 18, C79 (1951); J. Chatt, L. A. Duncanson, J. Chem. Soc., 59, 2332 (1991).
32. C. H. Jun, Y. T. Kim, J. T. Baek, D. R. Kim, H. J. Yoo, J. Vac. Sci. Technol. A, 14, 3214 (1996).
33. A. Devi, J. Goswami, R. Lakshmi, S. A. Shivashankar, S. Chandrasekara, J. Mater. Res., 13(3), 687, (1998).
34. Yu-neng Chang, Mat. Res. Soc. Symp. Proc., 280, 649, (1993).
35. R. L.Van Hemert, L. B. Spendlove, R. E. Sievers, J. Electrochem. Soc., 112, 1123 (1965).
36. W. G. Lai, Y. Xie, G. L. Griffin, J. Electrochem. Soc., 138, 3499 (1991).
37. Y. Pauleau, A. Y. Fasasi, Chem. Mater., 3, 45, (1991).
38. N. Awaya, Y. Arita, Jpn. J. Appl. Phys., 32, 3915 (1993).
39. W. S. Rees Jr, C. R. Caballero, Advanced Materials For Optics And Electronics, 1, 59 (1992).
40. J. RÖber, S. Riedel, S. E. Schulz, T. Gessner, Microelectron. Eng., 37/38, 111 (1997).
41. D.-H. Kim, R. H. Wentorf, W. N. Gill, Mat. Res. Soc. Symp. Proc., 260, 107 (1992).
42. D.-H. Kim, R. H. Wentorf, W. N. Gill, J. Electrochem. Soc., 140, 3273 (1993).
43. J. Pinkas, J. C. Huffman, D. V. Baxter, M. H. Chisholm, K.G. Caulton, Chem. Mater., 7, 1589 (1995).
44. N. S. Borgharkar, G. L. Griffin, A. James, A. W. Maverick, Thin Solid Films, 320, 86 (1998).
45. D. Temple, A. Reisman, J. Electrochem. Soc., 136, 3525 (1989).
46. A. E. Kaloyeros, A. Feng, J. Garhart, K. C. Brooks, S. K. Ghosh, A. N. Saxena, F. Luehers, J. Electronic Maters., 19, 271 (1990).
47. H. Li, E. T. Eisenbraun, A. E. Kaloyeros, J. Vac. Sci. Technol. B, 10(4), 1337 (1992).
48. N. Awaya, Y. Arita, Jpn. J. Appl. Phys., 30(8), 1813 (1991).
49. S. L. Cohen, M. Liehr, S. Kasi, Appl. Phys. Lett., 60(1), 50 (1992).
50. B. Lecohier, B. Calpini, J.-M. Philippoz, H. van sen Bergh, J. Appl. Phys., 72(5), 2022 (1992).
51. C.-C. Chiang, T. M. Miller, L. H. Dubois, J. Phys. Chem., 97, 11781 (1993).
52. E. L. Crane, Y. You, R. G. Nuzzo, G. S. Girolami, J. Am. Chem. Soc., 122, 3422 (2000).
53. J. Pinkas, J. C. Huffman, D. V. Baxter, M. H. Chisholm, K. G. Caulton., Chem. Mater., 7, 1589 (1995).
54. J.-Y. Kim, H. A. Marzouk, P. J. Reuctoft, C. C. Eloi, J. D. Robertson, J. Appl. Phys., 78(1), 245 (1995).
55. J.-Y. Kim, Y.-K. Lee, H.-S. Park, J.-W. Park, D.-K. Park, J.-H. Joo, W.-H. Lee, Y.-K. Ko, P. J. Reuctoft, B.-R. Cho, Thin Solid Films, 330, 190 (1998).
56. A. E. Kaloyeros, B. Zheng, I. Lou, J. Lau, J. W. Hellgeth, Thin Solid Films, 262, 20 (1995).
57. N. S. Borgharkar, G. L. Griffin, A. James, A. W. Maverick, Thin Solid Films, 320, 86 (1998).
58. N. S. Borgharkar, G. L. Griffin, H. Fan, A. Maverick, J. Electrochem. Soc., 146(3), 1041 (1999).
59. R. Solanki, B. Pathangey, Electrochemical and Solid-State Letters, 3(10), 479 (2000).
60. R. Solanki, J. Huo, J. McAndrew, J. Mater. Res., 17(9), 2394 (2002).
61. M. Shiratani, H. J. Jin, K. Takenaka, K. Koga, Science and Technology of Advanced Materials, 2, 505 (2001).
62. K. Takenaka, M. Shiratani, M. Onishi, M. Takeshita, T. Kinoshita, K. Koga, Y. Watanabe, Materials Science in Semiconductor Processing, 5, 301 (2003).
63. D. F. Lii, J. L. Huang, W. K. Tsai, W. T. Lo, and B. S. Yau, Surface Engineering, 17(4), 295 (2001).
64. S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, “Handbook of Plasma Processing Technology”, Noyes Publication, New Jersey, U.S.A, 1990.
65. W. A. Herrmann, A. Salzer, “Synthetic Methods of Organometallic and Inorganic Chemistry” Vol. 1 Literature, Laboratory Techniques, and Common Starting Materials, New York 1996.
66. J. A. Bertrand, Roy I. Kaplan, Inorganic Chemistry, 5(3), 489, (1966).
67. R. M. Silverstein, G. C. Bassler, T. C. Morrill, “Spectrometric Identification of Organic Compounds”, John Wiley & Sons, Inc., 1991.
68. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1996, Card 32-1283.
69. 林俊成, “RF濺鍍成長TaNx薄膜及其在積體電路之銅製程上的應用”, 國立台灣科技大學化工所 (1999).
70. S. Middleman, A. K. Hochberg, Process Engineering Analysis in Semiconductor Device Fabrication, McGraw-Hill, New York, 356 (1993).
71. M. A. George, K. M. Young, E. A. Robertson III, S. E. Beck, G. Voloshin, J. Chem. Eng. Data, 43, 60 (1998).
72. D. H. Kim, R. H. Wentorf, and W. N. Gill, J. Electrochem. Soc., 140, 3267 (1993).
73. C.-K. Hu, M. B. Small, F. Kaufman, D. J. Pearson, in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, Wong, S. S., Furkukawa, Materials Research Society, Pittsburgh, PA, 1990, 369-373.
74. D.-H. Kim, R. H. Wentorf, W. N. Gill, in Advanced Metallization and Processing for Semiconductor Devices and Circuits – II, Materials Research Society, Pittsburgh, PA, 1992, 107-112.
75. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1996, Card 5-667.
76. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, 1995, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics, Inc.
77. P. D. Kirsch, J. G. Ekerdt, Journal of Applied Physics, 90, 4256, (2001).
78. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1996, Card 4-836.
79. B. D. Culllity, Elements of X-ray Diffraction, Addison-Wesley Pub., London, 1978.
80. Milton Ohring, in “The Materials Science of Thin Films”, Academic Press, California 1991.
81. D. B. Knorr, D. P. Tracy, K. P. Rodbell, Appl. Phys. Lett., 59, 3241 (1986).
82. K. C.Waugh, Catalysis Today, 15, 51 (1992).
83. M. J. L. Gines, E. Iglesia, Journal of Catalysis, 176, 155 (1998).
84. C. Lee, H.-H. Lee, Y.-W. Yen, Y.-L. Kuo, Electrochemical and Solid- State Letters, accepted (2005).
85. I. E. Wachs, R. J. Madix, Applications of Surface Science, 1(3), 303 (1978).
86. Sexton, Surface Science, 88(2-3), 299 (1979).
87. J.-S. Park, H.-S. Park, S.-W. Kang, Journal of the Electrochemical Society, 149(1), C28, (2002).
88. K. Sasaki, A. Noya, T. Umezawa, Jpn. J. Appl. Phys, 29, 1043 (1990).
89. M. Takeyama, A. Noya, T. Sase, A. Ohta, J. Vac. Sci. Technol. B, 14(2), 674 (1996).
90. M. H. Tasi, S. C. Sun, C. P. Lee, H. T. Chiu, C. E. Tasi, S. H. Chuang, S. C. Wu, Thin Solid Films, 270, 531 (1995).
91. J.O. Olowolafe, C. J. Mogab, J. Appl. Phys., 72, 4099, (1992).
92. B. Mehrotra, J. Stimmell, J. Vac. Sci. Technol., B, 5(6), 1736 (1987).
93. K. Wakasugi, M. Tokunaga, T. Sumita, H. Kubota, M. Nagata, Y. Honda, Physica B, 239, 29, (1997).
94. T. Mashimo, S. Tashiro, M. Nishida, K. Miyahara, E. Eto, Physica B, 239, 13, (1997).
95. Mayumi B. Takeyama, Takaomi Itoi, Eiji Aoyagi, Atsushi Noya, Applied Surface Science, 190, 450, (2002).
96. C.-K. Hu, J. M. E. Harper, Materials chemistry and Physics, 52, 5, (1998).
97. K. Abe, Y. Harada, H. Onoda, J. Vac. Sci. Technol., B17, 1464, (1999).
98. R. S. Mishra, H. Jones, G. W. Greenwood, Materials Sci. Engineering, A117, 21 (1989).
99. N. P. Zulina, E. V. Bolberova, I. M. Razumovskii, Acta Mater., 44, 3625 (1996).
100. R. S. Mishra, H. Jones, G. W. Greenwood, J. Materials Sci. Lett., 7, 728 (1988).

無法下載圖示 全文公開日期 2006/10/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE