簡易檢索 / 詳目顯示

研究生: 卞廣強
Bian - Guang Qiang
論文名稱: 輔助電極串聯於多晶矽基材之線放電加工研究
The study of using assistant electrode in wire electrical discharge machining of polycrystalline silicon
指導教授: 郭俊良
Chun-liang Kuo
口試委員: 張復瑜
Fuh-Yu Chang
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 60
中文關鍵詞: 線放電加工輔助電極全因子實驗法變異數分析多晶矽基材
外文關鍵詞: assistant electrode, surface alloying
相關次數: 點閱:289下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之創新為在既有線放電加工製程上建立不同厚度的輔助電極,並於矽晶圓基材上串聯輔助電極並加工,進而分析此試片特徵之加工誘發電流、表面合金化以及表面粗糙度。其中利用全因子實驗方法(Full-factorial experiments, 3×2×2×2 Test array)與變異數分析 (ANOVA),找出多晶矽基材材料透過線放電加工(WEDM)及無使用輔助電極、使用15 mm輔助電極以及使用25 mm輔助電極尋找最佳製程參數組合。本實驗之參數組合參考四種可變因子、(三水平輔助電極厚度:0 mm、15 mm、25 mm;二水平伺服電壓:80-100V;二水平脈衝持續時間:50-100 μs;二水平迴路設定電阻:1.4-1.7Ω) 的全因子直交表。於線放電加工製程後,觀察24種參數在加工誘發電流、表面合金化以及表面粗糙度等各項定量指標在工件上的變化,並從中找出最佳線放電加工多晶矽基材參數。並利用統計分析方法中的變異數分析 (ANOVA) 及找出各項指標中之顯著因子,最後將各指標進行分析與結論。
本次實驗結果顯示無使用輔助電極的材料移除率最高為8.74 mg/min,無表面合金化,表面粗糙度最大為Sa 8.76 µm;使用15 mm輔助電極的材料移除率最高為8.91 mg/min,最高表面合金化含量為10.39%,表面粗糙度最大為Sa 8.73 µm;使用25 mm輔助電極的材料移除率最高為9.43 mg/min,最高表面合金化含量為18.28%,表面粗糙度最大為Sa 9.44 µm。


This study presentsa state-of-the-artconcept using assistant source electrodes assembled with target polycrystalline silicon workpiece to enhance machining performances on the observations of material removal rate, surface alloying and surface roughness in wire electrical discharge machining. The designed experiment elaborated key parameters such as three levels of the thickness of the source electrodes (0/15/25 mm), two levels of the servo voltage (80/100V), pulse-on time (50/100 µs) and determined electrical resistivity (1.4/1.7 Ω) in the predetermined discharging circuit for seeking the best parametric combinations. These entailed total 24 tests in a full factorial experiment. The observations are analyzed using statistical methods (Main effect plots and ANOVA) for the examinations of the significance of the operated parameters. The results reflected that the material removal rates were up to 9.43 mg/min when assistant electrodes of 25mm were facilitated whereas the same was only 8.74 mg/min without using assistant electrodes. In addition, the use of assistant electrodes produced surface alloying by up to 18.28% of aluminum content in the scanned matrix. Similarly, the measurements of the surface roughness suggested the greater value (Sa 9.44 µm) were produced with assistant electrodes of 25 mm, compared to the null value recorded without assistant electrode involved.

誌謝 I 摘要 II Abstract III 圖目錄 VI 表目錄 IX 第一章研究介紹1 1.1研究背景1 1.2研究目標6 第二章文獻回顧7 2.1放電加工應用表面改質方法7 2.2放電加工應用絕緣體/半導體材料之切削13 第三章實驗工作19 3.1實驗工作簡介19 3.2實驗材料19 3.3實驗設備24 3.3.1 DW35+B10A放電中走絲24 3.3.2示波器25 3.3.3電子微量天秤26 3.3.4綠光干涉儀28 3.3.5高解析掃描式電子顯微鏡29 3.4實驗設計33 3.4.1單位體積之能量密度分析33 3.4.2 Phase A串聯輔助電極加工應用多晶矽加工實驗34 3.4.3實驗操作流程與統計分析37 第四章實驗結果與討論38 4.1材料移除率38 4.2多晶矽表面合金化44 4.3表面粗糙度51 第五章結論與未來展望58 5.1文獻回顧總結58 5.2研究結果總結58 5.3未來展望60 參考文獻61

[1]顏柏輝,微細鑽石線鋸鋸切特性與磨耗之研究. 國立清華大學研究所博士論文, 2004.
[2]秦仕杰,多晶矽之線切割放電加工特性研究. 國立中央大學研究所碩士論文, 2009.
[3]賴江河,不同電極材料對放電表面特性的影響.國立中央大學研究所博士論文, 2006.
[4]C.L. Cao, X.L. Zhang, X. Zha, C.F. Dong, Surface integrity of tool steels multi-cut by wire electrical discharge machining. Procedia Engineering, 2014. 81: p. 1945–1951.
[5]T.Y. Tai, S.J. Lu, Improving the fatigue life of electro-discharge-machined SDK11 tool steelvia the suppression of surface cracks, International Journal of Fatigue, New York, 2009. 31: p. 433-438.
[6]L. Li, X.T. Wei, Z.Y. Li, Surface integrity evolution and machining efficiency analysis of W-EDM of nickel-based alloy. Applied Surface Science, 2014. 313: p. 138–143.
[7]S.Kumara, R.Singh, T.P. Singh, B.L. Sethi, Surface modification by electrical discharge machining: A review. Journal of Materials Processing Technology, 2009. 209: p. 3675–3687.
[8]T. Muthuramalingam, B. Mohan, A review on influence of electrical process parameters in EDM process. Archives of Civil And Engineering, 2014. 201.
[9]侯詠升,鉬金屬放電披覆加工之研究. 國立中央大學研究所博士論文, 2003
[10]D.K. Aspinwall, R.C. Dewes, H.G. Lee, J. Simao, P.A. McKeown, Electrical Discharge Surface Alloying of Ti and Fe Workpiece Materials Using Refractory Powder Compact Electrodes and Cu Wire. CIRP Annals - Manufacturing Technology,2003. 52: p. 151–156.
[11]K.Stambekova, H.M. Lin, J.Y. Uana, Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si–Fe alloy electrode. Applied SurfaceScience,2012. 258: p. 4483–4488.
[12]H.G. Lee, J. Simao, D.K. Aspinwall, R.C. Dewes, W. Voice, Electrical discharge surface alloying.Journal of Materials Processing Technology, 2004. 149: p. 334–340.
[13]P. Janmanee, A. Muttamara, Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension. Applied Surface Science, 2012. 258: p. 7255–7265.
[14]H.J. Chen, K.L. Wu, B.H. Yan, C.F. Dong, Characteristics of Al alloy surface after EDC with sintered Ti electrode and TiN powder additive. The International Journal of Advanced Manufacturing Technology, 2014. 72: p. 319–332.
[15]N.M. Abbas, D.G. Solomon, Md. F. Bahari, A review on current research trends in electrical discharge smachining (EDM). International Journal of Machine Tools & Manufacture, 2007. 47:P1214-1228.
[16]林宏彥,絕緣液中添加鋁粉對線切割放電加工之影響. 國立中央大學研究所博士論文, 2004.
[17]S.K. Choudhary, R.S Jadoun, Current research issue, trend & applications of powder mixed dielectric electric discharge machining (PM-EDM): A Review. International Journal of Engineering Science & Research Technology, 2014. 3: p. 335–358.
[18]Y.F. Tzeng, C.Y. Lee, Effects of powder characteristics on electrode discharge machining efficiency. The International of Advanced Manufacturing Technology,2001. 17: p. 586–592.
[19]P. Kumar, H.K. Kansal, S. Sehijpal, Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel. Journal of Manufacturing Process, 2007. 9: p. 13–22.
[20]王陳鴻,加工液中添加Al-Cr 混合粉末對工具鋼放電加工特性之影響. 國立中央大學研究所博士論文, 2010.
[21]D. Reynaerts, P.H. Heeren, H.V. Brussel, Microstructuring of silicon by electro-discharge machining (EDM) part I" theory. CIRP Annals - Manufacturing Technology,2003. 52: p. 151–156.
[22]Y. Uno, A. Okadaa, Y. Okamotoa, K. Yamazakib, S.H. Risbudb, Y. Yamadac, High efficiency fine boring of monocrystalline silicon ingot by electrical discharge machining. Sensors and Actuators, 1997. A 60: p. 212-218.
[23] 游博淮,多晶矽材料支線切割放電加工特性及表面品質改善之研究. 國立中央大學研究所博士論文, 2011.
[24]W.Y. Peng, Y.S. Liao, Study of electrical discharge machining technology for slicing silicon ingots. Journal of Materials Processing Technology, 2003. 140: p. 274-279.
[25]H.J. Pan, Z.D Liu, L.Gao, M.B. Qiu, Z.J. Tian, Study of small holes on monocrystalline silicon cut by WEDM. Materials Science in Semiconductor Processing, 2013. 16: p. 385-389.
[26]J. Punturat, V. Tangwarodomnukun, C. Dumkum, Surface characteristics and damage of monocrystalline silicon induced by wire-EDM. Applied Surface Science, 2014. 320: p. 83-92.
[27]H. Takino, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomuraa, M. Kunieda, Cutting of polished single-crystal silicon by wire electrical discharge machining. Precision Engineering, 2004. 28 p. 314–319.
[28]H. Takino, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomuraa, M. Kunieda, Contouring of polished single-crystal silicon plates by wire electrical discharge machining. Precision Engineering, 2007. 31 p. 358–363.
[29]H. Takino, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomuraa, M. Kunieda, High-quality cutting of polished single-crystal silicon by wire electrode discharge machining. Precision Engineering, 2005. 29: p. 423-430.
[30]M. Kunieda, S. Ojima, Improvement of EDM efficiency of silicon single crystal through ohmic contact. Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology 2000. 24: p. 185–190.
[31]J. Kozak , K.P. Rajurkar, N. Chandarana, Machining of low electrical conductive materials by wire electrical discharge machining (WEDM). Journal of Materials Processing Technology, 2004. 149: p. 266–271.
[32]Y. Tian, M.B. Qiu, Z.D. Liu, Z.J. Tian, Y.H. Huang, Discharge cutting technology for specific crystallographic planes of monocrystalline silicon. Materials Science in Semiconductor Processing, 2014. 27: p. 546-552.
[33]W. Wang, Z.D. Liu, Z.J. Tian, Y.H. Huang, Z.X. Liu, High efficiency slicing of low resistance silicon ingot by wire electrolytic-spark hybrid machining. Journal of Materials Science, 2004. 39(4): p. 1195-1205.
[34]S. Lee, M. Scarpulla, E. Bamberg, Effect of metal coating on machinability of high purity germanium using wire electrical discharge machining. Journal of Materials Processing Technology, 2013. 213(): p. 811-817.
[35]張聖祥,利用微細放電法加工絕緣陶瓷之研究.國立雲林科技大學研究所碩士論文, 2008.
[36]R. Leach, L. Brown, X.Q. Jiang, R. Blunt, M. Conroy, D. Mauger, Guide to the Measurement of Smooth Surface Topography using Coherence Scanning Interferometry. Measurement Good Practice Guide, 2008. 108: p. 17
[37]K. Ojha, R.K. Garg, K.K. Singh, Parametric Optimization of PMEDM Process using Chromium Powder Mixed Dielectric and Triangular Shape Electrodes. Journal of Minerals & Materials Characterization & Engineering, 2011. 10(11): p. 1087–1102.
[38]古錦松,氬氣鎢極電銲能力本位訓練教材認識鋁及鋁合金材料. 行政院勞工委員會職業訓練局.
[39]張聖祥,單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命指標分析研究.國立台灣科技大學研究所碩士論文, 2014.
[40]MO wire_中共國家標準GB_T4182—2003《鉬絲》
[41]M.S. Salem, C.L. Lee, S. Ikeda, M. Matsumura, Acceleration of groove formation in silicon using catalytic wire electrodes for development of a slicing technique. Journal of Materials Processing Technology, 2010. 210: p. 330–334.
[42]于劍平,放電加工表面特性之研究. 國立成功大學研究所博士論文, 2002.
[43]K.H. SYED, K.PALANIYANDI, Performance of electrical discharge machining using aluminum powder suspended distilled water. Turkish journal of engineering and environmental science, 2012. 36: p. 195–207.
[44]A.S. Gill, S. Kumar, Surface alloying by powder metallurgy tool electrode using EDM process. Materials Today: Proceedings, 2015. 2: p. 1723–1730.
[45]陳玉華,放電加工之表面裂紋敏感性研究. 國立成功大學研究所博士論文, 2003.
[46]戴子堯,放電加工之電極尺寸與加工參數對工具鋼表層特性之研究. 國立成功大學研究所博士論文, 2003.
[47]J. Simao, H.G. Lee, D.K. Aspinwall, R.C. Dewes, E.M. Aspinwall, Workpiece surface modification using electrical discharge machining. International Journal of Machine Tools & Manufacture, 2003. 43: p. 121–128.
[48]戴子堯,放電加工之電極尺寸與加工參數對工具鋼表層特性之研究. 國立成功大學研究所博士論文, 2003.

QR CODE