簡易檢索 / 詳目顯示

研究生: 吳岱璇
Tai-Hsuan Wu
論文名稱: 鹵化物固態複合正極的平台優化及其固態電池性能衰退現象
The platform optimization of halide solid-state composite cathodes and the degradation phenomenon of solid-state battery performance
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 134
中文關鍵詞: 鹵化物固態電解質硫化物固態電解質複合正極全固態電池介面反應乾式成膜
外文關鍵詞: halide solid electrolyte, sulfide solid electrolyte, composite cathode, all- solid-state battery, interface reaction, dry film process
相關次數: 點閱:500下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

固態電池(All-solid-state battery, ASSB)是一種較新的高能量密度電池技術,相對於傳統鋰離子電池(Lithium-ion battery, LIB)更安全且具有更高能量密度,具有巨大的應用前景。本研究聚焦於優化鹵化物複合正極,以提升全固態電池的性能和穩定性。
第一部分,以高電容量的層狀結構的多晶富鎳過渡金屬氧化物(LiNi0.8Mn0.1Co0.1O2, NMC811)的正極活性材料配合界面穩定性較佳的鹵化物固態電解質作為主要材料,鹵化物複合正極的優化過程首先從固態全電池組成的優化開始,以確保有穩定的平台觀測,包括正極集電材料的優化改為碳塗層鋁箔、負極材料選擇較高的電導率集電材的Li/Cu,以及複合正極組成增加導電碳至3 wt%提升導電度,結合以上的優化條件組成全固電池,在首圈充電中,電容量為214.21 mAh/g,放電電容量為177.85 mAh/g,達到了83.02%的庫倫效率。在20個循環中,平均庫倫效率為98.21%,在首圈充電時,面電容達到了4.53 mAh/cm2,顯示其具有高效的電化學性能,但衰退的現象仍清楚可見,第20圈電容量維持率降低至72.55%。
第二部分,利用X射線吸收光譜(XAS)技術研究NCM811和LIC之間的界面相互作用,研究結果顯示,高電位下NMC811的Ni離子會被LIC還原為較低的價態,通過計算平均價態,可以更直接地比較還原程度,進行傅立葉轉化為R-space進行晶格空間分析,發現混合過LIC的NMC811各元素之鍵長縮短,並降低了Ni-O的強度比例,證實了除了高電位下價數降低的還原現象,LIC與多晶NMC811不同程度混合也會導致晶體結構的變化。
最後部分,利用XANES及XRF mapping的量測,在負極端發現了正極材料中的過渡金屬訊號,如同液態電池的cross-talk的現象,並隨著循環圈數的增加,在XRF mapping可以看到沉積的分布量與範圍隨之增加,並且遷移於全固態電池各層之間,透過XANES及XPS可以發現,大部分Ni都是以2+和3+的價態沉積於負極端,這些實驗結果對於複合正極的衰退有了更多不同面向的認識,以利在日後進一步研究複合正極的性能衰退機制。


Solid-state batteries (SSBs) are a relatively new battery technology with higher energy density and improved safety than conventional lithium-ion batteries (LIBs). They hold great potential for various applications. This study focuses on optimizing halide composite cathode to enhance the performance and stability of all-solid-state batteries (ASSBs).
In the first part, a promising cathode electrode material nickel-rich lithium transition metal oxides (LiNi0.8Mn0.1Co0.1O2, NMC811) with layer structure and high capacity, is combined with halide solid electrolyte with superior interface stability as the main material. The optimization process of the halide composite cathode begins with optimizing the composition of the solid-state full cell to ensure a stable observation platform. This includes optimizing the positive electrode current collector material by using carbon-coated aluminum foil, selecting anode electrode material with a higher conductivity current collector such as Li/Cu, and increasing the conductive carbon content in the composite cathode to 3 wt% to enhance conductivity. By combining these optimization conditions, a full solid-state battery is fabricated, which exhibits a capacity of 214.21 mAh/g during the initial charging and a discharge capacity of 177.85 mAh/g, achieving 83.02% coulombic efficiency. After 20 cycles, the average coulombic efficiency is 98.21%. The surface capacity during the initial charging reaches 4.53 mAh/cm2, demonstrating its feasibility and potential for solid-state batteries. However, the degradation phenomenon is still evident, with the capacity retention rate decreasing to 72.55% after the 20th cycle.
In the second part, X-ray Absorption Spectroscopy (XAS) is employed to investigate the interface interaction between active material NCM811 and the halide solid electrolyte. The research findings reveal that Ni ions in NMC811 are reduced to lower oxidation states by the solid electrolyte under high potentials. The average oxidation states are calculated to compare the reduction extent directly. Fourier transformation of XAS data into R-space is performed for lattice spatial analysis, which indicates shortened bond lengths of various elements and a decrease in the Ni-O intensity ratio in NMC811 mixed with the solid electrolyte. This confirms the reduction phenomenon observed at high potentials and reveals that the mixture of the solid electrolyte with poly-crystalline NMC811 can also induce changes in the crystal structure.
In the final part, XANES and XRF mapping measurements are conducted to investigate the phenomenon of cross-talk between the transition metals in the active material NMC811 and the anode electrode in the ASSB. With increasing cycle numbers, XRF mapping reveals an increase in the distribution and range of deposited transition metals, resembling the cross-talk behavior observed in liquid batteries. Furthermore, the transition metals migrate between different layers of the solid-state battery. XANES and XPS analyses indicate that most deposited Ni exists in the 2+ and 3+ states at the anode side. These experimental results provide further insights into the performance degradation mechanisms of the composite cathode electrode and facilitate future research in this area.

摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XXII 第 1 章 緒論 1 1.1 前言 1 1.2 商業化鋰離子二次電池 2 1.3 全固態鋰離子電池 3 1.4 全固態電池的挑戰極為來發展性 5 第 2 章 全固態電池的電極設計 11 2.1氧化物正極材料 11 2.1.1 鈷酸鋰正極材料(LCO) 11 2.1.2 錳酸鋰正極材料(LMO) 12 2.1.2 磷酸鋰鐵正極材料(LFP) 13 2.1.3高鎳三元正極材料(NMC) 16 2.2 固態電解質 22 2.2.1 硫化物電解質 23 2.2.2 鹵化物電解質 25 2.3 固態複合正極 27 2.3.1 複合正極中之分解反應 27 2.3.2鹵化物複合正極 29 2.4全固態複合正極濕試膜與乾式膜 32 2.4.1固態複合正極溼式成膜 32 2.4.2固態複合正極乾式成膜 34 2.5 合金型態之負極 36 2.6 研究動機與目的 39 第 3 章 實驗方法 41 3.1 儀器設備 41 3.2 實驗藥品 42 3.3 實驗步驟及實驗儀器 43 3.3.1 濕式複合正極黏著劑配製 43 3.3.2 濕式複合正極塗布 43 3.3.3 乾式複合正極膜製備 45 3.3.3 固態電池 47 3.4 電化學測試 49 3.4.1 充放電測試 49 3.4.2 交流阻抗分析 49 3.4.3 線性掃描伏安法分析 50 3.5 儀器分析與原理 51 3.5.1 X-ray繞射分析(XRD) 51 3.5.3 X光射線光電子光譜(XPS) 51 3.5.4 X光射線吸收光譜(XAS) 52 第 4 章 鹵化物複合正極平台建立及優化 55 4.1固態全電池組成優化 56 4.1.1正極之集電材料優化 56 4.1.2 負極材料選擇與比較 58 4.1.3 鹵化物複合正極之導電碳比例優化 63 4.2鹵化物固態乾式複合正極膜優化 64 4.2.1濕式製程的問題與挑戰 64 4.2.1乾式固態複合正極膜製程之平台建立 65 4.2.2乾式固態複合正極膜全固態電池應用 72 4.3鹵化物複合正極反應分析 75 4.3.1 LIC與NMC811混合之XRF與XANES的介面鑑定分析 75 4.3.2 LIC與NMC811混合之XAS與R-space的鑑定分析 81 4.4 鹵化物複合正極之cross-talk現象 89 第 5 章 結論 99 第 6 章 未來展望與建議 101 參考資料 102

1. Sun, Y.-K., Promising All-Solid-State Batteries for Future Electric Vehicles. ACS Energy Letters 2020, 5 (10), 3221-3223.
2. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264.
3. Monajjemi, M., Graphene/(h-BN) n/X-doped graphene as anode material in lithium ion batteries (X=Li, Be, B and N). Macedonian Journal of Chemistry and Chemical Engineering 2017, 36 (1), 101-118.
4. Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J., Electrochemical Energy Storage for Green Grid. Chemical Reviews 2011, 111 (5), 3577-3613.
5. Knauth, P.; Tuller, H. L., Solid-State Ionics: Roots, Status, and Future Prospects. Journal of the American Ceramic Society 2002, 85 (7), 1654-1680.
6. Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S., Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews 2020, 120 (14), 6878-6933.
7. Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y., Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Advanced Materials 2018, 30 (17), 1705702.
8. <2023> The Present and Future of All Solid-State Battery Manufacturing Technology. https://www.giiresearch.com/report/sne1212745-present-future-all-solid-state-battery.html.
9. Global Solid-State Car Battery Markets 2021-2030 with Toyota, Solid Power, QuantumScape, Samsung SDI & LG Chem Dominating. https://www.globenewswire.com/news-release/2021/08/20/2283981/0/en/%20Global-%20Solid-State-Car-Battery-Markets-2021-2030-with-Toyota-Solid-Power-QuantumScape-Samsung-SDI-LG-Chem-Dominating.html.
10. Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G., All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. Journal of Power Sources 2018, 382, 160-175.
11. Janek, J.; Zeier, W. G., A solid future for battery development. Nature Energy 2016, 1 (9), 16141.
12. Hao, F.; Han, F.; Liang, Y.; Wang, C.; Yao, Y., Architectural design and fabrication approaches for solid-state batteries. MRS Bulletin 2018, 43, 775-781.
13. Shi, T.; Zhang, Y.-Q.; Tu, Q.; Wang, Y.; Scott, M. C.; Ceder, G., Characterization of mechanical degradation in an all-solid-state battery cathode. Journal of Materials Chemistry A 2020, 8 (34), 17399-17404.
14. Lu, Y.; Zhao, C.-Z.; Hu, J.-K.; Sun, S.; Yuan, H.; Fu, Z.-H.; Chen, X.; Huang, J.-Q.; Ouyang, M.; Zhang, Q., The void formation behaviors in working solid-state Li metal batteries. Science Advances 2022, 8 (45), eadd0510.
15. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 2018, 4 (1), 15.
16. Wu, B.; Chen, C.; Danilov, D. L.; Jiang, M.; Raijmakers, L. H. J.; Eichel, R.-A.; Notten, P. H. L., Influence of the SEI Formation on the Stability and Lithium Diffusion in Si Electrodes. ACS Omega 2022, 7 (36), 32740-32748.
17. Goodenough, J. B., Metallic oxides. Progress in Solid State Chemistry 1971, 5, 145-399.
18. Manthiram, A., A reflection on lithium-ion battery cathode chemistry. Nature Communications 2020, 11 (1), 1550.
19. Salgado, R. M.; Danzi, F.; Oliveira, J. E.; El-Azab, A.; Camanho, P. P.; Braga, M. H., The Latest Trends in Electric Vehicles Batteries. Molecules 2021, 26 (11), 3188.
20. Amatucci, G. G.; Tarascon, J. M.; Klein, L. C., CoO2, The End Member of the Lix CoO2 Solid Solution. Journal of The Electrochemical Society 1996, 143 (3), 1114.
21. Thackeray, M. M.; Johnson, P. J.; de Picciotto, L. A.; Bruce, P. G.; Goodenough, J. B., Electrochemical extraction of lithium from LiMn2O4. Materials Research Bulletin 1984, 19 (2), 179-187.
22. Li, Y.; Wang, L.; Zhang, K.; Yao, Y.; Kong, L., Optimized synthesis of LiFePO4 cathode material and its reaction mechanism during solvothermal. Advanced Powder Technology 2021, 32 (6), 2097-2105.
23. Molenda, J.; Molenda, M., Composite Cathode Material for Li-Ion Batteries Based on LiFePO4 System. 2011.
24. Yang, X.; Sun, Q.; Zhao, C.; Gao, X.; Adair, K. R.; Liu, Y.; Luo, J.; Lin, X.; Liang, J.; Huang, H.; Zhang, L.; Yang, R.; Lu, S.; Li, R.; Sun, X., High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes. Nano Energy 2019, 61, 567-575.
25. Liu, Z.; Yu, A.; Lee, J. Y., Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries. Journal of Power Sources 1999, 81-82, 416-419.
26. Xia, Y.; Zheng, J.; Wang, C.; Gu, M., Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 2018, 49, 434-452.
27. Manthiram, A.; Song, B.; Li, W., A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials 2017, 6, 125-139.
28. Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major, D. T., Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2. Chemistry of Materials 2020, 32 (3), 915-952.
29. Salgado, R.; Danzi, F.; Oliveira, J.; El-Azab, A.; Camanho, P.; Braga, M., The Latest Trends in Electric Vehicles Batteries. Molecules 2021, 26, 3188.
30. Li, X.; Ren, Z.; Norouzi Banis, M.; Deng, S.; Zhao, Y.; Sun, Q.; Wang, C.; Yang, X.; Li, W.; Liang, J.; Li, X.; Sun, Y.; Adair, K.; Li, R.; Hu, Y.; Sham, T.-K.; Huang, H.; Zhang, L.; Lu, S.; Luo, J.; Sun, X., Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters 2019, 4 (10), 2480-2488.
31. Wang, C.; Adair, K.; Sun, X., All-Solid-State Lithium Metal Batteries with Sulfide Electrolytes: Understanding Interfacial Ion and Electron Transport. Accounts of Materials Research 2022, 3 (1), 21-32.
32. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chemical Reviews 2016, 116 (1), 140-162.
33. Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 2011, 182 (1), 116-119.
34. <Correlation between structural and electrical properties in (1-x) AgPO3·xMX2 glasses (M = Pb2+, Hg2+; X = I-, Br-, Cl-) from Raman spectroscopy and ionic conductivity measurements.pdf>.
35. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J Am Chem Soc 2013, 135 (3), 975-8.
36. Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R., Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 2011, 182 (1), 53-58.
37. <Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4.pdf>.
38. Rao, R. P.; Adams, S., Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. physica status solidi (a) 2011, 208 (8), 1804-1807.
39. Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V., Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012, 221, 1-5.
40. Deiseroth, H.-J.; Maier, J.; Weichert, K.; Nickel, V.; Kong, S.-T.; Reiner, C., Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements. Zeitschrift für anorganische und allgemeine Chemie 2011, 637 (10), 1287-1294.
41. Yu, C.; van Eijck, L.; Ganapathy, S.; Wagemaker, M., Synthesis, structure and electrochemical performance of the argyrodite Li 6 PS 5 Cl solid electrolyte for Li-ion solid state batteries. Electrochimica Acta 2016, 215, 93-99.
42. Kraft, M. A.; Culver, S. P.; Calderon, M.; Bocher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G., Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). J Am Chem Soc 2017, 139 (31), 10909-10918.
43. Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F., Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries. Acc Chem Res 2021, 54 (12), 2717-2728.
44. Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.-S.; Li, H.; Janek, J.; Nan, C. W.; Nazar, L.; Maier, J.; Armand, M.; Chen, L., New Horizons for Inorganic Solid State Ion Conductors. Energy & Environmental Science 2018, 11.
45. Rosenbach, C.; Walther, F.; Ruhl, J.; Hartmann, M.; Hendriks, T. A.; Ohno, S.; Janek, J.; Zeier, W. G., Visualizing the Chemical Incompatibility of Halide and Sulfide-Based Electrolytes in Solid-State Batteries. Advanced Energy Materials 2023, 13 (6), 2203673.
46. Li, X.; Liang, J.; Yang, X.; Adair, K. R.; Wang, C.; Zhao, F.; Sun, X., Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy & Environmental Science 2020, 13 (5), 1429-1461.
47. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S., Solid Halide Electrolytes with High Lithium‐Ion Conductivity for Application in 4 V Class Bulk‐Type All‐Solid‐State Batteries. Advanced Materials 2018, 30.
48. Wu, H.; Han, H.; Yan, Z.; Zhao, Q.; Chen, J., Chloride solid-state electrolytes for all-solid-state lithium batteries. Journal of Solid State Electrochemistry 2022, 26.
49. Noh, S.; Nichols, W. T.; Cho, M.; Shin, D., Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte. Journal of Electroceramics 2018, 40 (4), 293-299.
50. Zhang, J.; Zheng, C.; Li, L.; Xia, Y.; Huang, H.; Gan, Y.; Liang, C.; He, X.; Tao, X.; Zhang, W., Unraveling the Intra and Intercycle Interfacial Evolution of Li6PS5Cl-Based All-Solid-State Lithium Batteries. Advanced Energy Materials 2020, 10 (4), 1903311.
51. Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J., Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials 2017, 29 (13), 5574-5582.
52. Auvergniot, J.; Cassel, A.; Foix, D.; Viallet, V.; Seznec, V.; Dedryvère, R., Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study. Solid State Ionics 2017, 300, 78-85.
53. Han, Y.; Jung, S. H.; Kwak, H.; Jun, S.; Kwak, H. H.; Lee, J. H.; Hong, S.-T.; Jung, Y. S., Single- or Poly-Crystalline Ni-Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will be the Winners for All-Solid-State Batteries? Advanced Energy Materials 2021, 11 (21), 2100126.
54. Tan, D. H. S.; Banerjee, A.; Deng, Z.; Wu, E. A.; Nguyen, H.; Doux, J.-M.; Wang, X.; Cheng, J.-h.; Ong, S. P.; Meng, Y. S.; Chen, Z., Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process. ACS Applied Energy Materials 2019, 2 (9), 6542-6550.
55. Chen, Y.-T.; Marple, M. A. T.; Tan, D. H. S.; Ham, S.-Y.; Sayahpour, B.; Li, W.-K.; Yang, H.; Lee, J. B.; Hah, H. J.; Wu, E. A.; Doux, J.-M.; Jang, J.; Ridley, P.; Cronk, A.; Deysher, G.; Chen, Z.; Meng, Y. S., Investigating dry room compatibility of sulfide solid-state electrolytes for scalable manufacturing. Journal of Materials Chemistry A 2022, 10 (13), 7155-7164.
56. Li, X.; Liang, J.; Adair, K. R.; Li, J.; Li, W.; Zhao, F.; Hu, Y.; Sham, T.-K.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Li, R.; Chen, N.; Sun, X., Origin of Superionic Li3Y1–xInxCl6 Halide Solid Electrolytes with High Humidity Tolerance. Nano Letters 2020, 20 (6), 4384-4392.
57. Lee, D. J.; Jang, J.; Lee, J.-P.; Wu, J.; Chen, Y.-T.; Holoubek, J.; Yu, K.; Ham, S.-Y.; Jeon, Y.; Kim, T.-H.; Lee, J. B.; Song, M.-S.; Meng, Y. S.; Chen, Z., Physio-Electrochemically Durable Dry-Processed Solid-State Electrolyte Films for All-Solid-State Batteries. Advanced Functional Materials n/a (n/a), 2301341.
58. Wang, Y.; Lu, D.; Bowden, M.; El Khoury, P. Z.; Han, K. S.; Deng, Z. D.; Xiao, J.; Zhang, J.-G.; Liu, J., Mechanism of Formation of Li7P3S11 Solid Electrolytes through Liquid Phase Synthesis. Chemistry of Materials 2018, 30 (3), 990-997.
59. Li, Y.; Wu, Y.; Wang, Z.; Xu, J.; Ma, T.; Chen, L.; Li, H.; Wu, F., Progress in solvent-free dry-film technology for batteries and supercapacitors. Materials Today 2022, 55, 92-109.
60. Hippauf, F.; Schumm, B.; Doerfler, S.; Althues, H.; Fujiki, S.; Shiratsuchi, T.; Tsujimura, T.; Aihara, Y.; Kaskel, S., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Materials 2019, 21, 390-398.
61. Zhang, Z.; Wu, L.; Zhou, D.; Weng, W.; Yao, X., Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. Nano Letters 2021, 21 (12), 5233-5239.
62. Wang, C.; Yu, R.; Duan, H.; Lu, Q.; Li, Q.; Adair, K. R.; Bao, D.; Liu, Y.; Yang, R.; Wang, J.; Zhao, S.; Huang, H.; Sun, X., Solvent-Free Approach for Interweaving Freestanding and Ultrathin Inorganic Solid Electrolyte Membranes. ACS Energy Letters 2022, 7 (1), 410-416.
63. Wenzel, S.; Sedlmaier, S. J.; Dietrich, C.; Zeier, W. G.; Janek, J., Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 2018, 318, 102-112.
64. Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy 2020, 5 (4), 299-308.
65. Nagao, M.; Hayashi, A.; Tatsumisago, M., Bulk-Type Lithium Metal Secondary Battery with Indium Thin Layer at Interface between Li Electrode and Li2S-P2S5 Solid Electrolyte. Electrochemistry 2012, 80 (10), 734-736.
66. Sakuma, M.; Suzuki, K.; Hirayama, M.; Kanno, R., Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 2016, 285, 101-105.
67. Luo, S.; Wang, Z.; Li, X.; Liu, X.; Wang, H.; Ma, W.; Zhang, L.; Zhu, L.; Zhang, X., Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat Commun 2021, 12 (1), 6968.
68. Zhang, W.; Schröder, D.; Arlt, T.; Manke, I.; Koerver, R.; Pinedo, R.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J., (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. Journal of Materials Chemistry A 2017, 5 (20), 9929-9936.
69. Santhosha, A.; Medenbach, L.; Buchheim, J. R.; Adelhelm, P., The indium− lithium electrode in solid‐state lithium‐ion batteries: phase formation, redox potentials, and interface stability. Batteries & Supercaps 2019, 2 (6), 524-529.
70. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S., Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. Advanced Materials 2018, 30 (44), 1803075.
71. Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C.; Banis, M. N.; Sham, T.-K.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Li, R.; Sun, X., Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie International Edition 2019, 58 (46), 16427-16432.
72. Deng, S.; Jiang, M.; Rao, A.; Lin, X.; Doyle-Davis, K.; Liang, J.; Yu, C.; Li, R.; Zhao, S.; Zhang, L.; Huang, H.; Wang, J.; Singh, C. V.; Sun, X., Fast-Charging Halide-Based All-Solid-State Batteries by Manipulation of Current Collector Interface. Advanced Functional Materials 2022, 32 (25), 2200767.

QR CODE