簡易檢索 / 詳目顯示

研究生: 彭國維
Kuo-wei Peng
論文名稱: 以聲射技術研探類岩粒徑大小與形狀於壓、剪過程破壞特徵
Effect of Grain Size and Shape in Rock-like Material on the Characteristics of Failure under Compression & Shearing using Technique of Acoustic Emission
指導教授: 陳堯中
Yao-chung Chen
口試委員: 黃兆龍
Chao-lung Hwang
陳立憲
Li-hsien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 212
中文關鍵詞: 斜向剪切儀聲射法電子斑紋干涉法單壓試驗
外文關鍵詞: inclined shear test, acoustic emission, electronic speckle parttern interferometry, uniaxial compressive.
相關次數: 點閱:241下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

岩石開裂之基本受力行為以張力破壞及剪力破壞居多,本研究分別進行直接剪力試驗及單軸壓縮試驗,並結合非破壞檢測技術,由巨微觀深入研探岩材之破裂機制。於斜剪試驗以水泥砂漿模擬類岩材料,單壓試驗以混凝土、水泥砂漿及水泥漿模擬類岩材料,研析岩石受壓、剪應力作用下之內部顆粒幾何形狀與微觀破壞機制,探尋岩石材料於壓、剪力作用時之破壞行為與歷程關係。
以類岩材料內部顆粒幾何大小對破壞過程中聲射訊號之影響為研究主軸,藉由改變類岩材料「顆粒材之粒徑大小」為主要變數,此外,斜剪試驗之變數尚有剪切角度與預裂縫有無,單壓試驗之變數尚有水膠比與齡期。採環狀應變計控制與裂縫開口位移計控制求得完整之加載歷程,並以非破壞之聲射技術(acoustic emission, AE)觀察微震裂源,同時輔以電子斑紋干涉法(electronic speckle pattern interferometry, ESPI)相互比對,進行一系列之斜剪與單壓試驗。
從斜剪試驗之巨觀行為可發現,粒徑愈大其尖峰剪應力愈大,研判顆粒間互鎖效應更為顯著。無預裂縫試體之裂縫偏斜角θ可知,角狀顆粒試體隨著粒徑越大互鎖效應造成尖峰剪應力越大的情況,使之θ角增加;由斜剪試驗之微觀行為可觀察出,角狀顆粒較易產生互鎖之作用,當試體顆粒間錯動時,AE事件便大量增生,此外,粒徑越大,互鎖效應顯著,AE事件越多,叢聚時機更早。剪角較小時,試體尖峰剪應力、正向應力較大, AE事件便大量累積;反之則較少微裂。空間分佈方面,叢聚發生於試體中央處,爾後沿著剪切面逐漸衍生為巨觀裂縫。
從單壓試驗之巨觀行為可發現,粗粒料之互鎖效應相對於細粒料高,故強度較高。單壓強度隨水膠比減少而增加,拌合水之減少有助於強度之提升。試體單壓強度,隨齡期增長而提高;由單壓試驗之微觀行為可觀察出,顆粒越大AE事件越多。單壓強度越高,叢聚發生時機較早。其AE事件多寡與齡期有關,顯示齡期越長,試體強度越高,故AE事件較多。
兩種非破壞檢測技術之微觀量測資料確實可收相互印證之預期效果,得以求驗破壞演化過程及其相關之破壞特徵。


Tensile and shear failures are the major failure modes for rocks. This research performed uniaxial compressive and inclined shear tests to study the fracture behaviors of rock with the assistant of nondestructive measuring technique of AE (acoustic emissions) and ESPI (electronic speckle pattern interferometry). Test materials include paste, mortar, and concrete.
The effects of size and shape of the particles on the acoustic emissions during the loading process were the key factors to be studied. Several other factors were also studied such as inclined shear angle and pre-existing crack for inclined shear tests, water-cement ratio and age for uniaxial compressive tests. Complete loading curves were obtained by stroke-controlled loading process. The micro behavior of specimen was monitored by both AE and ESPI.
Test results of inclined shear tests show that, from the macroscopic point of view, peak shear stress increases with increasing particle size due to greater particle interlocking effect, and the inclination angle of crack also increases with particle size. From the microscopic point of view, specimens of angular particles tend to have much more AE events during the loading process. AE events increase and localize at lower load level with increasing particle size. For specimens sheared at lower inclined shear angle, both AE events and peak shear stresses increase due to higher normal stresses. Microcracks were observed to cluster at the central portion of specimen and triggered the macrocrack initiation at later stage.
For uniaxial compressive tests, strength of specimen increases with increasing particle size, increasing age, and decreasing water-cement ratio. AE events increase and localize at lower load level for specimens with large particle size. AE events increase with increasing age of specimen due to higher compressive strength.
The distribution and localization of microcracks observed by AE was consistent with the initial crack position observed by ESPI.

論 文 摘 要 I ABSTRACT III 誌 謝 IV 目 錄 VI 表目錄 IX 圖目錄 X 符號對照表 XIV 第一章 緒 論 1 1.1 背景與動機 1 1.2 研究目的 3 1.3 範圍與方法 4 1.4 論文內容 6 第二章 文獻回顧 10 2.1 斜向剪切試驗之沿革與應用 10 2.2 斜向剪切試驗應力應變行為 13 2.2.1 岩體延性與脆性破壞準則 13 2.2.2 岩材力與變形的行為 15 2.2.3 粗糙角之定義與求算 17 2.3 單軸壓縮試驗之完整應力應變行為 21 2.4 線彈性破壞力學扼述 24 2.4.1 Griffith能量平衡理論 24 2.4.2 應力強度因子與破壞韌度 26 2.5 非破壞檢測-聲射技術之發展 27 2.5.1 聲射定位原理 28 2.5.2 聲射定位準則 31 2.6 非破壞檢測-電子斑紋干涉術之沿革與應用 33 第三章 試驗架構與執行 49 3.1 試驗材料 51 3.1.1 斜剪試體 51 3.1.2 單壓試體 53 3.1.3 試體準備程序與製作步驟 54 3.1.4 基本力學試驗及結果 58 3.2 試驗設備建置 60 3.2.1 斜剪試驗設備 60 3.2.2 單壓試驗設備 62 3.2.3 聲射(AE)儀設 62 3.2.4 電子斑紋干涉技術(ESPI)儀設 65 3.3 方法與流程 68 3.3.1 校正檢驗 68 3.3.2 斜剪試驗 73 3.3.3 單壓試驗 76 3.4 試驗參數說明 78 第四章 試驗結果與分析 101 4.1 剪切角度與內部幾何形狀對斜剪試驗之巨觀影響 105 4.1.1 顆粒幾何形狀對加載歷程巨觀之影響 105 4.1.2 剪切角度對加載歷程巨觀之影響 106 4.1.3 預裂縫分佈對加載歷程巨觀之影響 107 4.1.4 剪切角度之於類岩材料之裂衍特徵 109 4.1.5 斜向剪切試驗之粗糙角 110 4.2 剪切角度與內部幾何形狀對斜剪試驗之微觀影響 112 4.2.1 顆粒幾何形狀對微震裂源與加載歷程之影響 112 4.2.2 剪切角度分佈對微震裂源與加載歷程之影響 115 4.2.3 預裂縫對微震裂源與加載歷程之影響 117 4.2.4 聲射位源之分佈帶寬反應材料之特徵長度 118 4.3 材料配比與齡期對單壓試驗之巨觀影響 121 4.3.1 顆粒材幾何形狀對加載歷程勁度強度之影響 121 4.3.2 水膠比對加載歷程勁度強度之影響 122 4.3.3 試體齡期對加載歷程勁度強度之影響 123 4.4 材料配比與齡期對單壓試驗之微觀影響 125 4.4.1 顆粒材幾何形狀對微震裂源與加載歷程之影響 125 4.4.2 水膠比對微震裂源與加載歷程之影響 126 4.4.3 試體齡期對微震裂源與加載歷程之影響 128 4.5 非破壞耦合檢測之成果研析 130 4.5.1 微裂源叢聚與尖峰狀態之比對 130 第五章 結論與建議 186 5.1 結論 186 5.1.1 顆粒間的互制行為 186 5.1.2 剪切角度之影響 188 5.1.3 預裂有無之效應 189 5.1.4 水膠比之影響 190 5.1.5 齡期之影響 191 5.1.6 試驗材料之預判 191 5.1.7 破壞性試驗之建置 192 5.1.8 非破壞檢測之適用性 192 5.2 建議 193 5.2.1 試驗材料之建議 193 5.2.2 破壞性試驗之建議 193 5.2.3 非破壞檢測之建議 194 參 考 文 獻 196 附 錄A:校正實驗及相關資料與照片 200 附 錄B:責任分工表 207 附 錄C:委員意見回覆表 209 作 者 簡 介 212

1. 小林英男,「破壞力學」,龍璟文化,台北 (2002)。
2. 施國欽,「岩石力學」,文笙書局,台北 (2004)。
3. 李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北 (2006)。
4. 李佳龍,「音洩定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台南 (2003)。
5. 林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2006)。
6. 胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北 (2007)。
7. 陳家豪,「巴西試驗之音射定位分析研究」,岩盤工程研討會論文集 (2004)。
8. 洪啟德,「岩石之模擬材料與其直接剪力破壞模式之研究」,碩士論文,國立台灣大學土木工程學系,台北 (1989)。
9. 張健峰,「黑色片岩預應力室內試驗推估方法之研究」,碩士論文,國立成功大學土木工程系,台南 (2007)。
10. 黃國忠,「應用聲射法與分離元素法探討脆性岩材破壞機理之研究」博士論文,國立台灣科技大學營建工程系,台北 (2009)。
11. 楊長義,模擬規則節理面岩體強度與變形性之研究,博士論文,國立台灣大學土木工程研究所,台北 (1992)。
12. 楊文欣,「非破壞性聲光同步技術驗證類岩斜剪試驗之剪角影響與預裂效應」碩士論文,國立台灣科技大學營建工程系,台北 (2010)。
13. 廖志信,「岩石材料中音射發生源之位置探測研究」,碩士論文,國立成功大學土木工程系,台南 (1993)。
14. 劉信良,「複合式非破壞檢測於類岩斜剪過程之巨微觀破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
15. 劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔形貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北 (2007)。
16. 蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北 (2005)。
17. 應傳智,「人工軟弱岩石之研究」,碩士論文,國立台灣大學土木工程系,台北(1995)。
18. 魏德禎,「岩石斜向剪切試驗暨其聲光非破壞檢測之佐驗」碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
19. Butters, J. N and Leendertz, J. A., "Holographic and Video Techniques Applied to Engineering Measurements," Transactions of the Institute of Measurement and Control, Vol. 4, p 349-354 (1971).
20. Bray, D. E. and McBride, D., "Acoustic Emission Technology." Nondestructive Testing Techniques, New York, p 345-377, John Wiley & Sons Inc. (1992).
21. Berthelot, J. M., "Frequency Analysis of Acoustic Emission Signals in Concrete," Journal of Acoustic Emission, Vol. 11, No. 1, p 11-18 (1993).
22. Butters, J. N. and Leendertz, J. A., "Holographic and Video Techniques Applied to Engineering Mesurements," Transactions of the Institute of Measurement and Control, Vol. 4, pp.349-354 (1971).
23. Chen, L. H., "Failure of Rock Under Normal Wedge Indentation, " Ph. D. Thesis, University of Minnesota, USA (2002).
24. Chen, L. H. and Labuz, J. F., "Indentation of Rock Failure by Wedge-Shaped Tools,", International Journal of Rock Mechanics and Mining Sciences. Vol. 43, p 1023-1033 (2006).
25. Detournay, E., Fairhurst, C. and Labuz, J. F., "A Model of Tensile Failure Initiation under an Indentor," In P. Rossmanith (Ed.), Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), Vienna, Austria (1995).
26. Fowler, T. J., "Acoustic Emission of Fiber Reinforced Plastics," Journal of the Technical Councils of ASCE, Proceedings of the ASCE, Vol. 105, No. 2, p 281-289 (1979).
27. Gabor, D., "A New Microscopic Principle, "Nature, Vol. 161, p 777-778 (1948).
28. Griffith, A. A., “The phenomena of Rupture and Flow in Solids, "Philosophical Transactions of the Royal Society. "London A221, Vol. 221, p 163-197 (1921).
29. Hertz, H. H., Hertz's Miscellaneous papers, London: Macmillan. (1896).
30. Holcomb, D. J. and Costin L. S., "Detecting Damage Surface in Brittle Materials Using Acoustic Emission," ASME, Journal of Applied Mechanics. Vol. 53, p 536-544 (1986).
31. Irwin, G. R., "Analysis of Stresses and Strain Near the End of A Crack, " Trans. ASME, Journal of Applied Mechanics., Vol. 24, pp.361-364 (1957).
32. James, D. L., "Acoustic Emission Investigation into Some Concrete Construction Problems," Journal of Acoustic Emission, Vol. 8, No. 1-2, p s322-s325. World Meeting on Acoustic Emission. (1989).
33. Johnson, K. L., Contact Mechanics, Cambridge University Press. (1987).
34. Kaiser, J., "Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch," Ph.D Thesis, Technische Hochschule, Munich, German. (1953).
35. Leith, E. N. and Upatnieks, J., "Reconstructed Wavefronts and Communication Theory, " Journal of the Optical Society of America., Vol. 52, p 1123-1130 (1962).
36. Lajtai, E.Z., ”Mechanics of Second Order Faults and Tension Gashes,” Geological Society of America Bulletin. Vol. 80, p 225-227 (1969).
37. Landis, C., "Automated Determination of First P-wave Arrival and Acoustic Emission Source Location," Journal of Acoustic Emission, Vol. 10, No. 1-2, p s97-s103 (1991/1992).
38. Leith, E. N. and Upatnieks, J., "Reconstructed wavefronts and communication theory, " Journal of the Optical Society of America., Vol. 52, pp.1123-1130 (1962).
39. Lin, S. T., Hsieh, C. T. and Hu, C. P., "Two Holographic Blind-hole methods for measuring residual stress," Exp. Mech., Vol. 34, p 141-147 (1994).
40. Maji, A. K., "Acoustic Emissions from Reinforced Concrete," Experimental Mechanics, Vol. 34, No. 4, p 379-388 (1994).
41. Maji, A. K., Wang, J. L. and Lovato, J., "Electronic Speckle Pattern Interferometry for Fracture Mechanics Testing," Experimental Techniques, Vol. 15, No. 3, p 19-23 (1991).
42. Mishnaevsky(Jr.), L. L., "Physical Mechanisms of Hard Rock Fragmentation under Mechanical Loading: A Review," International Journal of Rock Mechanics and Mining Sciences. & Geomech. Abstr, Vol. 32, No. 8, p 763-766 (1995).
43. Mohr, O., “Welche Umstande Bedingen Die Elastizitatsgrenze Und Den Bruch Eines Materiales,” Zeitschrift des Vereines Deutscher Ingenieure, Vol. 44, p 1524-1530 (1900).
44. Ohtsu, M., "Acoustic Emission Characteristics of Concrete and Fundamental Mechanisms," Ph. D. Thesis, Kyoto University, Japan. (1982).
45. Rowe, P. W., Barden, I. and Lee, I. K., "Energy Components During the Triaxial Cell and Direct Shear Test, " Geotechnique, Vol. 14, p 247-261 (1964).
46. Stimpson B., "Modeling for Engineering Rock Mechanics, " International Journal of Rock Mechanics and Mining Sciences. Vol. 7, p 77-121 (1970).
47. Timoshenko, S. P. and Goodier. J. N., Theory of Elasticity,3rd ed., New York, McGraw-Hill.
48. Yang, Z. Y., "Qualitative Study on the Regularly Stick-Slip Shear Behavior of Ellipitical Particles, " Tamkang Journal of Science and Engineering, Vol. 1, No. 1, p 14-19 (1998)

QR CODE