簡易檢索 / 詳目顯示

研究生: 楊巧薇
Chiao-Wei Yang
論文名稱: 無水泥生態膠結材砂漿斷裂能量與單軸抗壓行為之研究
Study on Fracture Energy and Uniaxial Compressive Behavior of Mortar Made with No-Cement Eco-Binder
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 鄭敏元
Min-Yuan Cheng
林宜清
Yi-Ching Lin
施正元
Jeng-Ywan Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 109
中文關鍵詞: 無水泥膠結材尺寸效應破壞能應力應變曲線卜松比彈性係數
外文關鍵詞: No-cement binder, size effect law, fracture energy,, stress-strain relationship, Poisson’s ratio, Elastic modulus
相關次數: 點閱:340下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討無水泥膠結材砂漿與卜特蘭水泥(OPC)砂漿在兩種相似抗壓強度下,討論工程性質(抗壓強度、劈裂強度、卜松比、彈性係數)、完整應力應變曲線、與採用RILEM建議三點抗彎缺口梁由Size Effect Law (SEL)計算之破壞能。無水泥膠結材是由水淬高爐石粉(Slag)、F級飛灰(Fly ash)、CFBC飛灰(CFBC fly ash)組成,本研究取各材料英文名稱第一個字母為此膠結材名稱SFC。
    研究結果顯示: (1) SFC砂漿與OPC砂漿於相似28天抗壓強度下,SFC砂漿早期強度皆低於OPC砂漿,但晚期強度卻可與OPC砂漿相似,指出SFC砂漿之強度增加量高,尤其低水膠比強度增加量越高;(2) OPC砂漿與SFC砂漿於相似抗壓強度下,SFC砂漿彈性模數皆高於OPC砂漿,低強度組約高15%,高強度組約高23%;(3)尖峰強度部分,SFC砂漿尖峰強度與水膠比成反比,水膠比0.25與0.35相比,增加85%;(4)尖峰應變方面,SFC砂漿之尖峰應變與抗壓強度成反比,範圍介於0.00279~0.0042,SFC砂漿與OPC砂漿尖峰應變相比,低強度組高27%,於高強度組低32%;(5)SFC砂漿與OPC砂漿於相似抗壓強度下之應力應變曲線,可觀察出不論低或高強度,OPC砂漿峰後行為顯示較有韌性,而SFC砂漿過尖峰強度後發展皆較陡,屬較為脆性表現;(6)應力應變完整曲線之ClassⅡ破壞應力回彈現象,於本研究中試體尖峰強度大於60 MPa以上才會發生;(7) 於相似抗壓強度,SFC砂漿與OPC砂漿擁有類似劈裂強度,低強度差異約3%;高強度10%;(8) OPC砂漿三點抗彎缺口梁初始裂縫缺口寬度分別為2 mm與4 mm時,造成三點抗彎荷重差異值介於4%~12%,破壞能相差23%; (9)破壞能方面,SFC砂漿破壞能與抗壓強度成正比,抗壓強度增加量為80%與98%,破壞能增加76%與225%;OPC砂漿破壞能與SFC砂漿趨勢相反,破壞能與抗壓強度成反比,抗壓強度增加29%與75%,破壞能降低15%與33%。


    This study aims to investigate engineering properties, stress-strain relationship, and the fracture energy of mortar made with no-cement binder. The fracture energy was measured by three point bending (TPB) tests which were carried out on various notched beams, as recommended by RILEM based on Size Effect Law (SEL), and the test result were compared with those of mortar specimens of ordinary Portland cement (OPC) having similar compressive strengths. No-cement binder was denoted as SFC binder, which was made by three kinds of blended industrial solid wastes of ground granulated blast furnace slag (GGBFS/slag), Type F fly ash (FFA), and circulating fluidized bed combustion (CFBC) fly ash.
    Experimental results showed that: (1) For specimens with similar 28-day compressive strength, the early strength of SFC mortar specimen was lower than that of OPC mortar, but their later strengths were similar; (2) The elastic moduli of SFC mortar were higher than those of the OPC mortar at the similar compressive strength by 15% and 23%, for the low-strength group and high-strength group, respectively. (3) The peak strength of SFC mortar with water-to-binder (W/B) ratio of 0.25 was increased by 85% as compared with that of 0.35. (4) The peak strains of SFC mortar were in the range of 0.00279 to 0.0042, where peak strains were higher by 27% for low-strain group and lower by 32% for high-strength group as compared with those of OPC mortar. (5) The post peak behavior of stress strain relationship of SFC mortar showed more brittle behavior than that of OPC mortar with similar compressive strength. (6) ClassⅡsnap-back failure mode only happened when the compressive strength of SFC mortar higher than 60 MPa in this research; (7) The splitting strengths of SFC and OPC mortar had similar results at similar compressive strength, in which the difference of 3% and 10% occurred to the low-strength group and high-strength group, respectively. (8) For the TPB specimens with the initial crack widths of 2 mm and 4 mm, respectively, the resulting differences were between 4% and 12% for peak load and about 23% for fracture energy; (9) For SFC mortar, the increment of compressive strength by 80% and 98% induced the fracture energy increase by 76% and 225%, respectively. On the other hand, compressive strength increase by 29% and 75% as fracture energy decrease by 15% and 33%.

    摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 研究流程圖與內容 2 第二章 文獻回顧 4 2.1 前言 4 2.2 SFC 膠結材發展演變 4 2.2.1 輔助膠結材料(SCM)的使用 5 2.2.2 鹼激發材料使用在無水泥膠結材 6 2.2.3 CFBC灰作為激發劑 6 2.2.4 SFC膠結材之相關研究 7 2.3 單軸抗壓之完整應力應變行為 8 2.3.1 完整加載試驗 8 2.3.2 完整加載之峰後行為探討 10 2.3.3 混凝土抗壓破壞之機理 11 2.3.4 單軸抗壓試驗之影響因子 12 2.4 混凝土破裂模式 13 2.4.1 虛擬裂縫方法 (Fictitious Crack Approach) 13 2.4.2 有效彈性裂縫方法(Effective-Elastic Crack Approach) 15 第三章 試驗計畫 30 3.1 試驗內容與流程 30 3.2 試驗材料 30 3.2.1 水泥 30 3.2.2 水淬爐石粉 30 3.2.3 飛灰 30 3.2.4 CFBC灰 31 3.2.5 細粒料 31 3.2.6 強塑劑 31 3.3 配比設計 31 3.4 試驗變數與項目 32 3.4.1 試驗變數 32 3.4.2 試驗項目 32 3.5 拌合流程 33 3.6 試驗方法與設備 34 3.6.1 材料基本試驗 34 3.6.2 完整加載抗壓試驗 35 3.6.3 砂漿抗壓強度 38 3.6.4 砂漿流度試驗 38 3.6.5 劈裂試驗 39 3.6.6 破裂性質試驗 39 3.7 MTS伺服液壓加載系統 39 3.8 NDI(光學空間座標監測系統)和Marker(紅外線反射器) 40 第四章 結果與討論 54 4.1 坍流度 54 4.1.1 OPC砂漿坍流度 54 4.1.2 SFC砂漿坍流度 54 4.2 方塊抗壓強度 54 4.3 完整加載抗壓試驗 55 4.3.1 彈性模數 55 4.3.2 卜松比 56 4.3.3 尖峰強度 56 4.3.4 尖峰應變 57 4.3.5 應力應變曲線 57 4.3.6 實驗過程討論 58 4.4 劈裂強度 59 4.5 破裂性質 59 4.5.1 荷重-中點位移曲線 60 4.5.2 尺寸效應與破裂參數 61 第五章 結論與建議 99 5.1 結論 99 5.2 建議 100 參考文獻 102

    [1] 吳榮華,學者觀點-水泥產業的循環經濟,http://www.chinatimes.com/newspapers/20170705000074-260202,工商時報(2017)。
    [2] Nguyen, H.A., T.P. Chang, J.Y. Shih, C.T. Chen, and T.D. Nguyen, Sulfate resistance of low energy SFC no-cement mortar, Construction and Building Materials, Vol. 102, pp 239-243 (2016).
    [3] Nguyen, H.A., T.P. Chang, J.Y. Shih, C.T. Chen, and T.D. Nguyen, Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder, Vol. 106, pp 670-677 (2016).
    [4] 循環經濟, https://zh.wikipedia.org/wiki/%E5%BE%AA%E7%92%B0%E7%B6%93%E6%BF%9F,維基百科 (2017).
    [5] Chen, C.T., H. A. Nguyen, T.P. Chang, T.R. Yang, and T.D. Nguyen, Performance and microstructural examination on composition of hardened paste with no-cement SFC binder, Construction and Building Material, Vol. 76, pp 403-416 (2015).
    [6] Mindess, S., J.F. Young, and D. Darwin, Concrete, Second Edition, Pearson Education, Inc. (2002).
    [7] Sujjavanich, S., V. Sida, and P. Suwanvitaya, Chloride Permeability and Corrosion Risk of High-Volume Fly Ash Concrete with Mid-Rang Water Reducer, Material Journal, Vol. 102(3), pp 177-182 (2015).
    [8] Poon, C.S., L. Lam, and Y.L. Wong, A study on high strength concrete prepared with large volumes of ASTM Class F Fly Ash, Cement and Concrete Research, Vol. 30(3), pp 447-455 (2000).
    [9] Langley, W.S., G.G. Carette, and V.M. Malhotra, Structural Concrete Incorporating High Volumes of ASTM Class F Fly Ash, Material Journal, Vol. 86(5), pp 507-514 (1989).
    [10] Bijen, J., Benefits of Slag and fly ash, Construction and Building Materials, Vol. 10(5), pp 309-314 (1996).
    [11] Aimin, X., and S.L. Sarker, Microstructral study of gypsum activated fly ash hydration in cement paste, Cement and Concrete Research, Vol. 21(6), pp 1137-1147 (1991).
    [12] Chindaprasirt, P., C. Chotithanirm, H.T. Cao, and V. Sirivivatnanon, Influence OF Fly Ash Fineness on the Chloride Penertration of concrete, Construction and Building Materials, Vol. 21, pp. 356-361 (2007).
    [13] Yen, T., T.H. Hsu, Y.W. Liu, and S.H. Chen, Influence of class F fly ash on the abrasion erosion resistance of high-strength concrete, Construction and Building Materials, Vol. 21(2), pp 458-463 (2007).
    [14] Cry, M., Influence of supplementary cementitious materials (SCMs) on concrete durability, in Eco-efficient concrete, Woodhead Pubishing Ltd, pp.153-197 (2013).
    [15] Gao, J.M., C.X. Qian, H.F Liu, B. Wang and L. Li, ITZ microstructure of concrete containing GGBFS, Cement and Concrete Research, Vol. 35, pp. 1299-1304 (2005).
    [16] Sajedi, F., and H.A. Razak, The effect of chemical activators on early strength of ordinary Portland cement-slag mortars, Vol. 24, pp 1944-1951 (2010).
    [17] Saetta, J.G., B,A. Schrefler, and R.V. Vitaliani, The carbaonation of concrete and mechanism of moisture, heat and carbon-dioxide flow-through porous materials, Cement Conr. Res., Vol. 23, pp 761-772 (1993).
    [18] Belie, N.D., J. Kratky, and S.V Vlierberghe, Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations, Cement and Concrete Research, Vol. 40, pp 1723-1733 (2010).
    [19] Li, Q., H. Xu, F. Li, P. Li, L. Shen, and J. Zhai, Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes, Fuel, 90, pp 366-372 (2012).
    [20] Dung, N., T.P. Chang, and T.R Yang, Performance evaluation of and eco-binder made with slag and CFBC fly ash, Journal of Materials in Civil Engineering, Vol. 26 (2014).
    [21] Salain, I.M.A.K., P. Clastres, J.M. Bursi, and C. Pellissier, Circulating Fluidized Bed Combustion Ashes as an Activator of Ground Vitrified Blast Furnace Slag, Special Publication, Vol. 202, pp. 225-224 (2001).
    [22] 蔡孟原,循環式流體化床鍋爐專體報導,科學發展,450期,26-32頁(2010)。
    [23] Fu, X., Q. Li, and J. Zhai, The physical-chemical characterization of mechanically-treated CFBC fly ash, Cement and Concrete Composites, Vol. 30, pp. 220-226 (2008).
    [24] Boonerm, K., V. Sata, K. Pimraksa, and P. Chindaprasirt, Improved geopolymerization of bottom ash by incorporatiog fly ash and using waste gypsum as additive, Cement and Concrete Composites, Vol. 34, pp 819-824 (2012).
    [25] Brown, E.T., Rock Characterization Testing and Monitoring, ISRM Suggested Methods, Pergamon Press, Oxford, pp. 107-127 (1981).
    [26] Rechart, F.E., A. Brandtzaeg, and R.L. Brown, A study of the failure of concrete under combined compressive stresses, Bulletin 128, University of Illinois Engineering Experiment Station (1928).
    [27] Hallbauer, D.K., H. Wagner, and N.G.W Cook, Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff, triaxial compression tests, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 10, pp. 713-726 (1973).
    [28] 黃兆龍,混凝土性質與行為,詹氏書局,台北 (2010)。
    [29] Shah, S.P., and R. Sankar, Internal Cracking and Strain-Softening Response of Concrete under Uniaxial Compression, ACI Materials Journal, Vol. 84, pp. 200-212 (1987).
    [30] Andreev, G.E., rittle Failure of Rock Materials, Test Results and Constitutive Models, Balkema, Rotterdam (1995).
    [31] Jansen, D.C., and S.P. Shah, Effect of Length of Compressive Strain Softening of Concrete, Journal of Engineering Mechanics, ASCE, Vol. 123, pp.25-35 (1997)
    [32] Blanton, T.L., Effect of Strain Rates from 10-2 to sec-1 in Triaxial Compression Tests om Three Rocks, Int. J. Rock Mech . Min. Sci. & Geomech. Abstr., Vol. 18, pp. 47-62 (1981).
    [33] Shah, S.P., S.E. Swartz, and C. Ouyang, Fracture Mechanics of Concrete, John Wiley & Sons Inc (1995).
    [34] Hillerborg A., M. Modeer, and P.E. Petersson, Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cement and Concrete Research, Vol. 6, pp. 773-782 (1976).
    [35] Jenq, Y.S., and S.P. Shah, A, Two Parameter Fracture Model for Concrete, Journal of Engineering Mechanics, Vol. 111, pp. 1227-1241 (1983).
    [36] Bazant, Z.P., and M.T. Kazemi, Determination of Fracture Model for Concrete, Journal of Engineering Mechanics, Vol. 44, pp. 111-131 (1985).
    [37] RILEM TC 89-FMT, Size-Effect Method for Determining Fracture Energy and Process Zone Size of Concrete, Materials and Structure, Vol. 23, pp 461-465 (1991).
    [38] Wang, S.D., K.L. Scrivener, and P.L. Pratt, Factors affect the strength of alkali-activated slag, Cement and Concrete Research, Vol. 24, pp. 1033-1043 (2014).
    [39] Martin C.D., and N.-A. Chandler, The progressive Fracture of Lau du Bonnet Granite, Int. J. Rock Mech. Min Sci & Geomech. Abstr., Vol. 31, pp. 643-695.
    [40] Goodman, R.E, Introduction to Rock Mechanics, John Wiley & Sons Inc (1989).
    [41] Hakala, M., and E. Heikkila, Summary report- Development of Laboratory tests and the stress-strain behavior of Olkiluoto mica gneiss, POSIVA 97-04, Posiva Oy, Finland pp. 42 (1997).
    [42] Blanton, T.L., Effect of Strain Rates from 10-2 to sec-1 in Triaxial Compression Tests on Three Rocks, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 18, pp. 47-62 (1981).
    [43] Thornton, P.A. and V.J. Colangelo, Fundamentals of Engineering Materials, Prentice-Hall, NJ (1985).
    [42] Bazant, Z.P., and B.H. Oh, Crack Band Theory for Fracture of Concrete, Materials and Structures, RILEM, Vol. 16, pp. 155-177 (1983).
    [44] Karihaloo, B.L and P. Nallathambi, Notched Beam Test: ModeⅠFracture Toughness, RILEM Report 5, Fracture Mechanics Test Methods for Concrete, edited by S.P Shah, and Carpinteri, Vol. 74, No.11 pp. 2831-2836 (1991).
    [44] ASTM C150/C150M-17, Standard Specification for Portland Cement, ASTM Committee C01 (2017).
    [45] ASTM C168-17, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM Committee C09 (2017).
    [46] RILEM TC 148-SSC: Strain Softening of Concrete – Test Methods for Compressive Softening, Test Method for Measurement of the Strain-Softening Behavior of Concrete under Uniaxial Compression, Materials and Structure, Vol. 33, pp 347-351 (2001).
    [47] ASTM C188-17, Standard Test Method for Density of Hydraulic Cement, ASTM Committee C01 (2017).
    [48] Kotovos, M. D., Effect of testing techniques on the post-ultimate behavior of concrete in compression, Material Structure, Vol. 16, pp 3-12 (1983).
    [49] ASTM C496-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM Committee C09 (2017).
    [50] Anthony, E.J., and A.P. Iribarne, Study of Hydration during Curing of Residues from coal combustion with limestone addition, J Energy Res Technology, Vol. 119, pp.89-95 (1997).
    [51] Anthony, E.J., and L. Jia, and Y. Wu. CFBC ash Hydration Studies, Fuel, Vol. 84, pp.1393-7 (2005).
    [52] Boumiz, A., C. Vernet, and F.C. Tenoudjit, Mechanical Properties of Cement Pastes and Mortars at Early Ages, Advanced Cement Based Materials,Vol. 3, pp. 94-106 (1996).
    [53] Xie, J., A.E. Elwi, and J.G. MacGregor, Mechanical Properties of Three High-Strength Concretes Containing Silica Fume, ACI Materials Journal, Vol. 92, pp. 135-145 (1995).
    [54] Einsfeld, R.A., and M.S.L. Velasco, Fracture parameters for high-performance concrete, Cement and Concrete Research, Vol. 36, pp. 576-583 (2006)
    [55] Darwin, D., S. Abraham, R. Kosul, and S.G. Luan, Fracture Energy of High-Strength Concrete, ACI Material Journal, Vol. 98, pp.410-417 (2001).
    [56] Jensen, E. A., and W. Hansen, Fracture Energy Test for Highway Concrete—Determining the Effect of Coarse Aggregate on Crack Propagation Resistance, Transportation Research Record 1730, pp. 10-16 (2001).
    [57] CNS 487, Method of test for density, relative density (specific gravity), and absorption of fine aggregate, CNS committee (1993).
    [58] ASTM C496-14, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concretein Compression, ASTM Committee C09 (2014).

    QR CODE